
AD-A233 469
PROCEEDINGS OF NINTH ANNUAL

NATIONAL CONFERENCE ON
ADA TECHNOLOGY

DTIC Sponsored By:

S ELECTE D ANCOST, INC.
MAR 2 0 1991 .

SWith Participation By:
. UNITED STATES ARMY

UNITED STATES NAVY
UNITED STATES MARINE CORPS

UNITED STATES AIR FORCE
FEDERAL AVIATION ADMINISTRATION

STRATEGIC DEFENSE INITIATIVE OFFICE
ADA JOINT PROGRAM OFFICE

NATIONAL AERONAUTICS & SPACE ADMINISTRATION

Academic Host:
COPPIN STATE COLLEGE

WASHINGTON HILTON & TOWERS - WASHINGTON, DC

March 4-7, 1991

Approved for Public Release: Distribution Unlimited

91 3 18 073

I

9th ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY
CONFERENCE COMMITTEE 1990-1991

Executive Committee Chair: Academic Outreach Co-Chair: DR. ARTHUR JONES ADVISORY MEMBERS
DR. M. SUSAN RICHMAN MS. LUWANA S. CLEVER Morehouse College
The Pennsylvania State Florida Institute of Tech Atlanta, GA 30314 MR. LOUIS J. BONA
University at Harrisburg Melbourne, FL 32901 FAA Technical Center
Middletown, PA 17057 DR. GENEVIEVE M. KNIGHT Atlantic City Airport, NJ 08405

Academic Outreach Co-Chair: Coppin State College
Treasurer: MR. JAMES E. WALKER Baltimore, MD 21216 MR. DANIEL E. HOCKING
MS. SUSAN MARKEL Network Solutions AIRMICS
TRW Herndon, VA 22070 MR. STEVE LAZEROWICH Atlanta, GA 30332-0800
Fairfax, VA 22031 Alsys

Budget Committee Chair: Reston, VA 22090 DR. JOHN SOLOMOND
Secretary: MR. DONALD C. FUHR Ada Joint Program Office
MR. JESSE WILLIAMS Tuskegee University DR. CHARLES LILLIE Washington, DC 20310
Cheyney University Tuskegee, AL 36088 Science Application Int'l
Cheyney, Pa 19319 McLean, VA 22101 MR. CARRINGTON STEWART

By-Laws Committee Chair: NASA
Chair-Elect: DR. RICHARD KUNTZ MR. RICHARD PEEBLES Houston, TX 77058
MS. DEE M. GRAUMANN Monmouth College Concurrent Computer Corp.
General Dynamics, DSD W Long Branch, NJ 07764 Tinton Falls, NJ 07724 MS. ANTOINETTE STUART
San Diego, CA 92123 Department of the Navy

Technical Program Chair: MS. LAURA VEITH Washington, DC 20734
Immediate Past-Chair: MS. CHRISTINE L. BRAUN Andrulis Research Corp.
MR. MICHAEL D. SAPENTER Contel Technology Center Bethesda, MD 20814 CAPT. DAVID THOMPSON
Telos Federal Systems Fairfax, VA 22033 HO, U.S. Marine Corps
Lawton, OK 73501 CONFERENCE DIRECTOR: Washington, DC 20380-0001

MR. MIGUEL A. CARRIO, JR. MARJORIE Y. RISINGER, CMP
Conference Co-Chair: Teledyne Brown Engineering Rosenberg & Risinger, Inc. MS. KAY TREZZA
MS. JUDITH M. GILES Fairfax, VA 22030 Culver City, CA 90230 HQ, CECOM, CSE
Intermetrics Ft. Monmouth, NJ 07703-5000
Cambridge, MA 02138 MS. VERLYNDA DOBBS

Wright State University MR. GEORGE W. WATTS
Conference Co-Chair: Kettering, OH 45420 HQ, CECOM, CSE
MS. CATHERINE PEAVY Ft. Monmouth, NJ 07703-5000
Martin Marietta MR. DAVID L. JOHNSON
Information Systems Group GTE Government Systems
Englewocd, CO 80112 Rockville, MD 20850

PANELS AND TECHNICAL SESSIONS
Tuesday, March 5, 1991 Thursday, March 7, 1991

8:30 AM Opening Session 8:30 AM SEI Assessment Panel
10:00 AM Ada Policies, Practices & Initiatives Panel 8:30 AM Student Papers I
2:00 PM Real-Time Issues 10:30 AM Ada 9X Panel
2:00 PM Reuse I 10:30 AM Secure Systems
2:00 PM Management 10:30 AM Student Papers II
2:00 PM Technology Research I 2:00 PM Future Directions in Ada Panel
4:00 PM Reuse II
4:00 PM Metrics
4:00 PM Technology Research II

Wednesday, March 6, 1991 Papers
8:30 AM Opening Session
9:00 AM Ada Success Stories Panel The papers in this volume were printed directly from unedited

10:45 AM Applications reproducible copies prepared by the authors. Responsibility for
10:45 AM Education I contents rests upon the author, and not the symposium committee
10:45 AM Environments orits members. Afterthe symposium, all publication rights of each
10:45 AM Process & Methods I paper are reserved by their authors, and requests for republication
2:00 PM Mini Tutorial of a paper should be addressed to the appropriate author. Ab-
2:00 PM Education II stracting is permitted, and it would be appreciated if the sympo-
2:00 PM Process & Methods II sium is credited when abstracts or papers are republished. Re-
4:00 PM Total Quality Management Panel quests for individual copies of papers should be addressed to the
4:00 PM Preparing Students for Industry Panel authors.

ii

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

PROCEEDINGS

EIGHTH NATIONAL CONFERENCE ON ADA TECHNOLOGIES

Bound--Available at Fort Monmouth

2nd Annual National Conference on Ada Technology Proceedings-1984 (Not Available)
3rd Annual National Conference on Ada Technology Proceedings-1985-$10.00
4th Annual National Conference on Ada Technology Proceedings-1986 (Not Available)
5th Annual National Conference on Ada Technology Proceedings-1987 (Not Available)
6th Annual National Conference on Ada Technology Proceedings-1988--$20.00
7th Annual National Conference on Ada Technology Proceedings-1989-$25.00
8th Annual National Conference on Ada Technology Proceedings-1990-$25.00

Extra Copies: 1-3 $25; next 4 $20; next 11 & above $15 each

Make check or bank draft payable in U.S. Dollars to ANCOST and forward requests to:

Annual National Conference on Ada Technology
U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-SE-CRM (Ms. Kay Trezza)
Fort Monmouth, New Jersey 07703-5000

Telephone inquiries may be directed to Ms. Kay Trezza at (201) 532-1898

Photocopies-Available at Department of Commerce. Information on prices and shipping charges should be
requested from:

U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22151
USA Accesion For

Include title, year, and AD number NTIS C&!
DTIC T;0.10

2nd Annual National Conference on Ada Technology-1984-AD A142403 U . .d
3rd Annual National Conference on Ada Technology-1985--AD A164338 J
4th Annual National Conference on Ada Technology-1 986--AD Al 67802
5th Annual National Conference on Ada Technology-1987-AD A178690 By
6th Annual National Conference on Ada Technology-1988-AD A190936 Dit ;b.'Oo. I

Dist ACI

r_:i 'TY

HYATT REGENCY
ATLANTA GA

1990 Ada Conference

OLOGYO TECHNOLOGY
COWRENCE CONFERENCE

IR

Ada Sessions
and Panel

Discussions

Ada

TtCHNOILOGYI

ONFERENCE -

C'T

'1OGY
p COMMRENCE

!OWEO LEVEL
MVy HALL

Ada Conference
Registration

w A and Exhibits

MINI.

Ada Conference
Highlights

~iI~

.~ ~-

L. ~- /

L

J p

*

I

Ada Conference
Highlights

-

/

' ! Ii

41

Ada Conference
Highlights

8th ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY

Awards and Thank You's

The 1990 Ada Technology Conference Planning Committee posed for this group
picture after a successful conference.

TABLE OF CONTENTS

TUESDAY, MARCH 5, 1991 3.3 On Decomposing an Ada CSCI of a Large Command and Control
hibit Hours: 3:30pr - 7:00pm System into TLCSCs, LLCSCs and Units: With Suggestions for

Using DOD-STD-2167A--L. Gray, Ada PROS, Inc., Fairfax, VA... 55
PENING SESSION: 8:30am -9:30am
Keynote Speaker: LTG Billy M. Thomas -- Deputy Commanding General Session 4: 2,'00pr - 3:30pr
for Research, Development, and Acquisition, HO Army Materiel Technology Research I
Command, Washington, DC .. 2 Chairperson: Dr. Charles Lillie, Science Application

International, McLean, VA
inel Discussion 1: 10:00am - 12.00n 4.1 Automatic Programming Systems for Ada: Theory and Practice
[a Policies, Practices & Initiatives of Object Oriented Methods of Program Specification from
Moderator: Mr. John H. Sintic, Director, CECOM Requirements-W. Arden, Contel Telos Corp, Shrewsbury, NJ 69

Center for Software Engineering, Fort Monmouth, NJ 3 4.2 An Approach to Ada Implementation of an Associative Memory
Spotlight Speaker: System--EK. Park and F.A Skove, U.S. Naval Academy,
VADM Jerry 0. Tuttle, U.S. Navy, Director Space & Annapolis, MD, and C.S. Kang, The American University,

Electronic Warfare, Navy Department, Washington, DC 4 Washington, DC 72
Panelists: 4.3 Incorporating Garbage Collection and Persistence within Ada--S.J.
Mrs. Miriam Browning, Vice Director for Information Zeil, Old Dominion University, Norfolk, VA 80

Management for Command, Control, Communication and
Computers, U.S. Army, Washington, DC .. 5 Session 6: 400pm -5:30pr

BGEN Gerald L. McKay, Deputy Ass't Chief of Staff for C412 Reuse II
HO, U.S. Marine Corps, Washington, DC Chairperson: Mr. Daniel Hocking, AIRMICS, Atlanta, GA

Mr. James G. Cain, Deputy Associate Administrator for 6.1 Analysis of Software Reuse on AFATDS Concept Evaluation--
Systems Development, FAA, Washington, DC C.A. Burnham, R.D. Gerardi, P. Ho, and H.F Joiner, II,

Air Force Representative, TBA Contel Telos Corp., Shrewsbury, NJ 87

JNCH: 12:00n - 2:00pm 6.2 A Methodology for the Evaluation of Reusable Ada Software

Guest Speaker: LTG August M. Cianciolo -- Military Deputy Libraries--S.H. Levy, Calculemics, Inc., Fanwood, NJ 92

to the Assistant Secretary of the Army, The Pentagon, 6.3 Facilitating Reuse in a Software Engineering Environment--

W ashington, DC : .. 6 J.C. Schettino, Jr. and C. Kozlowski, Contel Technology
C enter, C hantilly, V A .. 100

esslon 1: 2.Opm - 3:30pm Session 7: 4:00pm - 5:30pr
eal-Time Issues Metrics
Chairperson: Mr. Steve Lazerowich, Alsys, Reston, VA Chairperson: Mr. Michael Sapenter, Contel Telos Corp.,

1 Managing Throughout When Using Ada in a Hard, Real-Time Lawton, OK
System--W. L. Miller, Georgia Institute of Technology, 7.1 Measuring Ada Design to Predict MaintOKinability--W. I,
Atlanta, G A .. 9 .. . M esuri n d D eig n i Prei ct n i n tit ute ,2Ealat. Ra-ieDsrbue ytm sn d S. Henry, and C. Selig, Virginia Polytechnic Institute,

2 Evaluation of Real-ime Distributed Systems Using Ada Blacksburg, VA .. 107
Concurrency--M. Bassiouni and M. Chiu, University of 7.2 A Software Mtrics Database: Support for Analysis and
Central Florida, and J. Thompson, Institute for Simulation 7. cAsoa MeicS Database Supportzrali andand Training. Orlando, FL .. 16 Decision-Making--S.L Pfieeger and J.C. Fitzgerald, Jr.,

and Traning, rlandoFL ...C16terelChTchnolo yyCent r,.Chan illy,.A.................................. 111
3 A Dynamic Preference Control Solution to the Readers and 7.3 A Distributed Compilation Environment-Lessons Learned--

Writers Problem--S. Miriyala, University of Illinois at 7. Ditrbted C at enn et-Lesonsm
Urbana-Champaign, Urbana, IL, and T. Elrad, Illinois D. Gtterbarn, East Tennessee State University, Johnson
Institute of Technology, Chicago, IL .. 25 City, TN . 120

ession 2: 2:OOpm - 3:30pm Session 8: 4:00pr - 5:30pm

euse I Technology Research II

Chairperson: Ms. Christine L. Braun, Contel Technology Chairperson: Dr. Arthur Jones, Morehouse College,

Center, Chantilly, VA Atlanta, GA

1 The RAPID Center Reusable Software Components (RSCs) 8.1 Incremental Operational Specifications for the Verification

Certification Process--J.C. Piper and W. L. Barner, of Ada Programs--B. Wieand and W. Howden, University of

U.S. Army Information Systems Software Development California-San Diego, La Jolla, CA .. 128

Center- Washington, Fort Belvoir, VA 32 8.2 N-Version Programming Using the Ada Tasking Model--R.J.

2 STARS Asset Management System--B.J. Kitaoka and PA. . Leach and D.M. Coleman, Howard Univ., Washington, DC 135
2 ARS Science Applications International Corp. 8.3 Concurrency in Ada and VHDL--C. Schaefer, The MITRE Corp.,
Berggren, F M cLean, VA 142
Orlando, FL

3 Software Reuse Progress--J.W. Hooper, The University of 5:30pm - 7:00pm - Reception In Exhibit Hall
Alabama in Huntsville, Huntsville, AL and R.O. Chester,
Martin Marietta Energy Systems, Inc., Oak Ridge, TN7:00pm - 10:00pm - "Birds of a Feather" Discussions

ession 3: 2:00pr - 3:30pm
lanagement

Chairperson: Ms. Judith Giles, Intermetrics, Inc., WEDNESDAY, MARCH 6,1991
Cambridge, MA ExDiSAt MARCs 6, -991

I An Integrated Approach to Ada Project Planning--B Exhibit Hours: 10:30am - 7:00pm
Papanicolaou, Lockheed Sanders, Nashua, NH 45

2 Managing the Ada Conversion and Integration of Mission LTG Jerome B. Hilmes -- Director, Directorate of Information
Critical Defense Systems--T.S Archer, Contel Telos Corp., Systems for Command, Control, Communication and Computers,S ie rra V is ta , A Z 5 0 O f c f t e S c e a y o h r y h e t g nOffice of the Secretary of the Army, The Pentagon,

W ashington, D C ... 7

xi

Panel Discussion I: 9:00am - 10:30am Mini Tutorial: 2.00pm - 3:30pm
Ada Success Stories Object Oriented Software Engineering

Moderator: Ms. Dee M. Graumann, General Dynamics, DSD, Moderator: Mr. Edward V. Berard, President, Berard Software
San Diego, CA Engineering Inc., Germantown, MD

Panelists: This mini tutorial will discuss Object Oriented Software Engineering
Mr. Stan Levine, Deputy Project Manager, Common Hardware (OOSE) and include these topics:

Software, Ft. Monmouth, NJ *Object oriented requirements analysis (OORA)
Capt. Samuel Jordan, Head User View Systems Branch, U.S. *Object oriented design (OOD)

Marine Corps, Central Design & Programming Activity *Object oriented domain analysis (OODA)
Mr. Mike Stark, Goddard Space Flight Center, Greenbelt, MD
Mr. Currie Colket, Navy Deputy to the AJPO, The Pentagon, Ada specific issues will be mentioned where appropriate by the presenter,

Washington, DC who has over 8 years' experience in applying object oriented technology.
Mr. Thomas P. O'Mahoney, Program Director, Air Base Decision

System, Hanscom AFB, MA Session 13: 2:00pr - 3:30pm
Education II

Session 9: 10:45am - 12:15pm Chairperson: Dr. Genevieve M. Knight, Coppin State College,
Applications Baltimore, MD

Chairperson: Mr. George Watts, CECOM CSE, Fort Monmouth, NJ 13.1 Software Engineering Education "An Experiment"--P.B. Lawhead,
9.1 Developing Interface Standards for Ada Systems--E.L. Krous, The University of Mississippi, University, MS, and

Contel Telos Corp., Lawton, O K .. 150 R. Hess, IBM Corporation, Boulder, CO .. 233
9.2 A Layered Architecture for DBMS Interactions from an Ada 13.2 Leveraging CBT in Universities to Produce Productive Ada

Application--A. McKay and R.A. Pederson, GTE Government Students for Industry--J.E. Walker, Network Solutions,
S ystem s, R ockville , M D .. 152 H erndon, V A .. 238

13.3 An Ada-Based Translator Writer System--T.F. Reid, Contel
Session 10: 10:45am - 12:15pm Technology Center, Chantilly, VA .. 243
Education I

Chairperson: Ms. Luwana Clever, Florida Institute of Session 15: 2:00pm - 3:30pm
Technology, Melbourne, FL Process and Methods II
10.1 Tasking Facilities in Ada: "The Cigarette Smokers Problem"--T.L. Chairperson: Ms. Susan Markel, TRW, Fairfax, VA
Newsome, Lanham, MD .. 160 15.1 Quality Assurance Using Ada and DOD-STD-2167A--

10.2 Adopting Ada as a Primary Undergraduate Programming Language D.L. Disbrow and J.D. Martin, Telos Systems Group,
--J.J. Spegele and E.K Park, U.S. Naval Academy, Annapolis, Lawton, O K .. 249
M D .. 164 15.2 A Look at SEI Software Process Assessm ents--T.B. Bollinger

10.3 Classroom Activities for an Advanced Ada Class--F.L. Moore, and C. McGowan, Contel Technology Ctr, Chantilly, VA 255
Texas Instruments, Inc., Dallas, TX .. 170

Panel Discussion IV: 4:00pm - 5:30pm
Session 11: 10:45am - 12:15pm Total Quality Management
Environments Moderator: Dr. Alan B. Salisbury, President, Contel Technology

Chairperson: Mr. Carrington Stewart, NASA, Lyndon B.Johnson Center, Chantilly, VA
Space Center, Houston, TX Panelists:

11.1 Architecting Distributed Real-Time Ada Applications: The Dr. David Sundstrom, General Dynamics, Fort Worth, Tx
Software Architect's Life Cycle Environment--W.E. Royce and Mr. Dennis Turner, CECOM CSE, Ft. Monmouth, NJ
D.L. Brown, TRW SEDD, Redondo Beach, CA 174 Mr. David Owens, Software Productivity Consortium, Herndon, VA

11.2 Universal Network Architecture Services: A Portability Case
Study--W.E Royce, P.W. Blankenship, E.A. Rusis, and B.P. Panel Discussion V: 4:00pm - 5:30pm
Willis, TRW SEDD, Redondo Beach, CA 181 Preparing Students for Industry

11.3 The Catalyst Software Engineering En:ironment--S.L. Moderator: Mr. James Walker, Network Solutions, Herndon, VA
Mulholland, Rockwell International, Cedar Rapids, IA 188 Panelists:

Session 12: 10:45am - 12:15pm Ms. Pamela Lawhead, University of Mississippi, University, MS.

Process and Methods I Mr. Johan Margano, Computer Science Corp., Rockville, MD
Chairperson: Ms. Catherine Peavy, Martin Marietta Information
Systems Group, Englewood, CO 5:30pm - 7:00pm - Reception in Exhibit Area

12.1 Transforming the 2167A Requirements Definition Model into
an Ada-Object Oriented Design--J.T. Lukman, Thousand Oaks,
C A .. 200 TH U RS D A Y, M A RC H 7, 1991

12.2 An Overview of the Clear Lake Life Cycle Model (CLLCM)-- Exhibit Hours: 8:00am - 12:00n
K.L. Rogers, The MITRE Corp., Houston, TX; M. Bishop,
Unisys, Houston, TX; and C.W. McKay, NASA Software Engineering Panel Discussion VI: 8:30am - 10:00am
Research Center, University of Houston- SEI Assessment
Clear Lake, Houston, TX .. 206 Moderator: Ms. Susan Markel, TRW , Fairfax, VA

12.3 Quality Assurance Requirements for an Evolutionary Panelists:
Development Methodology--R.M. Lobsitz, P.G. Clark, and Mr. Kenneth Dymond, SEI, Pittsburgh, PA
C.R. String, TASC, Reading, MA 223 Mr. Robert Beach, TRW, Redondo Bach, CA

Mr. Judah Mojalinski, Contel Technology Center, Chantilly, VA

LUNCH BREAK: 12:15pm - 2:00pr Student Papers I: 8:30am - 10:00am

xii

Panel Discussion Vil: 10:.30am -12,00n
Ada 9X

Moderator: Ms. Christine Anderson, U.S. Dept. of Defense,
Elgin AFB, FL

Panelists: Key Participants In the Ada OX Process

Session 16: 10:30am.- 1200n
Secure Systems

Chalrperson: Mr Donald C. Fuhr, Tuskegee University,
Tuskegee, AL

16.1 The Mystery: Why do Many of the Variables Declared in Ada
Programs Model Conceptually Invariant Objects?-J.A.
Perkins, Dynamics Research Corp., Andover, MA 282

16.2 Programming Practices Relating to Minimal Visibility and
Minimal lnteraction-J.A. Perkins, Dynamics Research Corp.,
Andover, MA.. 294

Student Papers I11: 10:30am - 12:00n

LUNCH - 12:00n - 2:00pm
Guest Speaker: MG Albert J. Edmonds -- Assistant Deputy

Chief of Staff, Command, Control, Communication and
Computers, HO, USAF, Washington, DC.............................. 8

Panel Discussion VINI: 2:00pm - 4:.00pm
Future Directions In Ada

Moderator: Dr. Barry Boehm, DARPA, Washington DC
Panelists:
Mr. Marshall Potter, U.S. Navy
FAA Representative

xliii

KEYNOTE SPEAKER

LTG Billy M. Thomas
Deputy Commanding General for Research,

Development and Acquisitions,
HQ, U.S. Army Materiel Command

Alexandria, VA

Lieutenant General Thomas was born in Deputy Commander/Assistant Commandant,
Crystal City, Texas and grew up in U.S. Army Signal Center and School, Fort
Kileen. His college years were spent at Gordon, GA.
Texas Christian University where, in
1962, he completed the Reserve Officer's Decorations and Badges awarded to
Training Corps curriculum, earned a BS General Thomas include the Legion of
Degree in Merit with Oak Leaf Cluster, Bronze Star
Secondary Education, and was then with 2 Oak Leaf Clusters, Meritorious
commissioned a second lieutenant in the Service Medal with 3 Oak Leaf- Clusters,
U.S. Army. General Thomas also holds an and the Joint Service Commendation
MS Degree in Telecommunications Medal. He is also authorized to wear
Operations from George Washington the Parachutist's Badge.
University.

He is married to the former Judith K.
General Thomas has attended the Signal McConnell of Boise, Idaho.
School, Basic and Advanced Courses, the They have four children.
U.S. Army Command and General Staff
College, and the U.S. Army War College.

In over 27 years' of active service, he
has had important overseas command
assignments in Germany, Thailand, and
Vietnam,
and held a variety of significant staff
assignments prior to his present
position. His most recent include
Commanding General,

Communications-Electronics Command and
Fort Monmouth, Deputy Director, Combat
Support Systems, Office of the Deputy
Chief of Staff for Research, Development
and Acquisition, Washington, DC, and

9th Annual Naional Conference on Ada Technology 1991 2

OPENING PANEL

Ada POLICIES, PRACTICES, AND INITIATIVES

Mr. John H. Sintic
Director, CECOM Center for

Software Engineering, U.S. Army CECOM
Fort Monmouth, NJ

John H. Sintic assumed his current Before joining the Center, Mr. Sintic
position as Director, CECOM Center for was Chief of the Engineering Division,
Software Engineering (CECOM CSE), on I Joint Interface Test Force/Joint
April 1988. The CECOM Center is the Interoperability Tactical Command and
single CECOM focal point for providing Control Systems (JITF/
software life cycle management, software JINTACCS) from 1978 to 1983. In this
engineering and software support to position, he directed engineers and
Mission Critical Defense Systems (MCDSs) computer scientists (military and
used in strategic and tactical civilian) in the research, development
Battlefield Functional Areas (BFAs) and engineering for Joint Service
supported by CECOM. The CECOM CSE is Interoperability of Command, Control and
also the Army/Army Material Command Communications Systems.
focal point for Computer Resource He served as project manager for the
Management (CRM), Advanced Software development of the Joint Interface Test
Technology (AST), Ada Technology, Systems (JITS) - the world's largest
Joint/Army Interoperability Testing distributed command and control
(JAIT), and software quality and interoperability test bed developed to
productivity, eleven Joint Service/Agency test sites.

Mr. Sintic has been with the Center
since December, 1983. Prior to his Mr. Sintic has a BS Degree in computer
present assignment, he served as Deputy science. He is involved in many civic
Director of the CECOM CSE. He also functions and has served on the Ocean
served as Associate Director, Computer Township Board of Education. He is also
Resource Management and Software a member of the Monmouth College High
Engineering Support, CECOM CSE. Technology Advisory Board.
Mr. Sintic has over 25 years of
experience in the field of software and John and Trudy Sintic have four sons and
computer technology, live in Oakhurst, NJ.

3 9th Annual National Conference on Ada Technology 1991

SPOTLIGHT SPEAKER
OPENING PANEL

Vice Admiral Jerry 0. Tuttle, U.S. Navy
Director, Space and Electronic Warfare
Office of the Chief of Naval Operations

Before assuming his current assignment, Vice Admiral Tuttle's
career has included assignments as Deputy Director for
Intelligence and External Affairs at the Defense Intelligence
Agency; Deputy and Chief of Staff for the Commander in Chief,
U.S. Atlantic Fleet; and Director, Command, Control and
Communications System, the Joint Chiefs of Staff. He has
commanded Attack Squadron EIGHT ONE; Carrier Air Wing THREE;
replenishment ship USS KALAMAZOO; Aircraft Carrier USS JOHN F.
KENNEDY, Carrier Group EIGHT; and Carrier Group TWO/Battle Force
SIXTH Fleet.

Vice Admiral Tuttle received a Communications Engineering degree
from the Naval Postgraduate School in 1963 having attended the
undergraduate and postgraduate schools simultaneously. He
graduated with honors from the Naval War College, Newport, Rhode
Island, and concurrently received an MA in International
Relations from George Washington University in 1969.

Vice Admiral Tuttle's personal decorations include the Defense
Distinguished Service Medal; Distinguished Service Medal; Defense
Superior Service Medal; Legion of Merit (4);Distinguished Flying
Cross (3); Meritorious Service Medal (2); Air Medal (23) - five
individual and 18 strike/flight awards; Navy Commendation Medal
(4); and various campaign awards. He flew over 200 combat
missions over North Vietnam and has more than 1000 arrested
carrier landings.

Vice Admiral Tuttle is married to the former Barbara Bonifay of
Pensacola, FL. They have five children, Michael, Vicky, Mark,
Stephen and Monique.

9th Annual National Conference on Ada Technology 1991 4

OPENING PANEL
Ada POLICY, PRACTICES, AND INTIATIVES

Miriam F. Browning
Vice Director for Information Management Office

Director of Information Systems
for Command, Control, Communications and Computers,ODISC4

Miriam F. Browning serves as the senior civilian for information
resources management for the Department of the Army.

Prior to this position, Mrs. Browning was the Deputy Assistant
Inspector General for Administration and Information Management,
DoD, Office of the Inspector General.

Mrs. Browning has held a variety of important positions in
government. She has been in Senior Management positions with
Deputy Chief of Staff for Resource Management and Deputy Chief of
Staff for Information Management at HQ's Forces Command. She was
also the Chief of Computer Services for the Center for Infectious
Diseases for the Centers for Disease Control.

Mrs. Browning has a BA from Ohio State University in Political
Science, and an MS in Information Technology from George
Washington University. Her military education includes Federal
Executive Institute in Charlottesville, VA and US Army War
College, Carlisle Barracks, PA.

Mrs. Browning has received numerous awards including the DA
Meritorious Civilian Service Award in 1988.

She and her husband, David Benjamin Browning of Edenton, NC,
reside in Alexandria, VA.

5 9th Annual National Conference on Ada Technology 1991

LUNCHEON SPEAKER

Lieutenant General August M. Cianciolo
Military Deputy to the Assistant Secretary of the Army

(Research, Development and Acquisition)

Lieutenant General August M. Cianciolo, Lieutenant General Cianciolo received a
as Military Deputy to the Assistant BA in Accounting from Xavier University
Secretary of the Army for Research, and MS Degree in Aerospace Engineering
Development and Acquisition, supports at the University of Southern
the Army Acquisition Executive and the California. His military education
Assistant Secretary of the Army for RDA includes the Field Artillery School
with staff work, advice, and decision Basic Course, the Air Defense Artillery
recommendations for the breadth of the School Advanced Course, the United
Army Acquisition function; places major States Army Command and General Staff
emphasis on Technology and Assessment, College and the United States Army War
Systems, and Plans and Programs; serves College.
as chairman of the Preliminary Army
Systems Acquisition Review Committee Awards and decorations which Lieutenant
(ASARC); is the principal military General Cianciolo has received include
witness for RDA appropriations with the t!Ta Distinguished Service Medal, the
Congress; advises the Army Chief of Bronze Star Medal with "V" Device and
Staff and Vice Chief of Staff on two Oak Leaf Clusters, the Meritorious
research, development and acquisition; Service Medal with one Oak Leaf Cluster,
supervises the Program Executive Officer Air Medals, the Army Commendation Medal
system. with two Oak Leaf Clusters and the

Master Army Aviator Badge.
He is the former Deputy Commanding
General for Research, Development and He and his wife, Sheila, have one
Acquisition at the Army Material daughter, Theresa and two sons, Martin
Command. Prior to this position he was and Anthony.
Commanding General at the U.S. Army
Missile Command at Redstone Arsenal.

Lieutenant General Cianciolo has held a
variety of important positions including
Deputy for Systems Management in the
Office of the Assistant Secretary of the
Army for Research, Development and
Acquisition. He was the Deputy Director
of Material, Plans and Programs and
later the Deputy Chief of Staff for
Research, Development and Acquisition.
Lieutenant General Cianciolo was the
Project Manager for Multiple Launch
Rocket System at MICOM as well as the
Project Manager for the Standoff Target
Ac 4 uisition/Attack System at Fort
Monmouth.

9th Annual National Conference on Ada Technology 1991 6

KEYNOTE SPEAKER

LTG Jerome B. Hilmes
Director of Information Systems for
Command, Control, Communications, and

Computers, U.S. Army

Lieutenant General Jerome B. Hilmes Commander, 7th Engineer Brigade and

was born in Carlyle, Illinois on 21 Ludwigsburg-Kornwestheim Military

December 1935. Upon completion of Community, Stuttgart, Germany (1978-80);

studies at the United States Military Commander, 23rd Engineering Battalion,

Academy in 1959, he was commissioned a 3rd Armored Division, Hanau, Germany
cod lieutenant and awarded a Bachelor (1976); and Commander, Task Forcesecond letnnanawreaBahor Sierra, 18th Engineer Brigade, Vietnam

of Science degree. He also holds a MS

and PhD degree from Iowa State (1970-71).

University. His military education General Hilmes' major staff
includes completion of the U.S. Army assignments include Deputy Assistant
Engineer School, U.S. Army Command and Chief of Engineers and Programs,
General Staff College and the Naval War Washington, DC (1981-83); Director of
College. He is a registered Facilities Engineering and Housing, Fort
professional engineer in the state of Bragg, NC (1980-81); and Assistant
New York. Deputy Chief of Staff Engineer

He has held a wide variety of Headquarters, U.S. Army, Europe (1976-

command and staff positions culminating 78).

in his current assignment as Director of His publications include, "LHX",
Information Systems for C4, Office "Green Ribbon Panel Report, Mar 85",
Secretary of the Army. These include: "Winter Reforger '79: Lessons Learned",

Commander of OTEA, a field "Stopping an Armored Attack", MICV-
operating agency of the office of the UTTAS", "Statistical Analysis of Under-
Chief of Staff, Army. General Hilmes reinforced Prestressed concrete Flexural

had responsibility for planning and Members" and "Seventh Army Expedient

conducting continuous comprehensive Bridge".

evaluation (C2E) and operational testing Awards and decorations which
for all major Army systems. General Hilmes received include the

Commander of the Southwestern Distinguished Service Medal, Legion of

Division, U.S. Army Corps of Engineers Merit (three awards), Bronze Star Medal

in Dallas (1985-88) and the Corps' North (two awards), Meritorious Service Medal,

Central division in Chicago (1983-85). Air Medal, Joint Service Commendation

He was also Chairman of the Board of Medal, and Army Commendation Medal with
Engineers and a member of the V Device (two awards) and the Gallantry

Mississippi River Commission. Cross with Silver Star.

He is married to the former Geri
McDonough of Albany, NY. They have four
sons: Bruce, G4ry, Douglas and Andrew.
Bruce and Gary are both in the U.S.

7 9th Annual National Conference on Ada Technology 1991 Army.

LUNCHEON SPEAKER

MAJGEN Albert J. Edmonds
Assistant Deputy Chief of Staff

Command, Control, Communications &
Computers, HQ, USAF

Major General Albert J. Edmonds is of the Deputy Chief of Staff, Plans and
Assistant Chief of Staff/Systems for Operations. From June 1, 1983 to June
Command, Control, Communications and 14, 1983 he served as Director of Plans
Computers, Headquarters United States and Programs for the Assistant Chief of
Air Force, Washington, DC. He is Staff for Information Systems.
responsible for establishing policy for
communications and computer systems General Edmonds then was assigned to
throughout the Air Force. headquarters Tactical Air Commmand

Langley Air Force Base, as Assistant
General Edmonds received a Bachelor of Deputy Chief of Staff for Communications
Science degree in chemistry for Morris and Electronics, and Vice Commander,
Brown College and a Master of Arts Tactical Communications Division. In
degree in counseling psychology from January 1985 he became Deputy Chief of
Hampton Institute. He e"tered the Air Staff for Communications-Computer
Force in 1964 and was commissioned upon Systems, Tactical Air Command
graduation from Officer Training School, Headquarters, and Commander, Tactical
Lackland Air Force Base, Texas and Communications Division, Air Force
graduated from Air War College as a Communications Command, Langley. In July
distinguished graduate. He completed 1988 he became Director of Command and
the National Security program for senior Control,, Communications and Computer
officials at Harvard University in 1987. Systems Directorate, U.S. Central

Command, MacDill Air Force Base, FL. He
The General was assigned to Air Force assumed his present duties in May 1989.
Headquarters in May 1973. As an Action
Officer in the Directorate of Command, His military decorations and awards
Control and Communications, he was include the Defense Distinguished
responsible for managing Air Service Medal, Legion of Merit
Communications programs in the Meritorious Service Medal with two oak
Continental United States, Alaska, leaf clusters, and Air Force
Canada,, South America, Greenland, and Commendation Medal with three oak leaf
Iceland. In June of 1975 the General clusters
was assigned to the Defense
Communications Agency and headed the The General was named in Outstanding
Commercial Communications Policy Office. Young Men of America in 1973. he is a
General Edmonds was assigned to Andersen member of Kappa Delta Pi Honor Society
Air Force Base, Guam, in 1977, as and is a life member of the Armed Forces
Director of Communications-Electronics Communications and Electronica
for Strategic Air Command's 3rd Air Association.
Division and as Commander of the 27thCommunications Squadron, General Edmonds is married to the formerJacquelyn Y. McDaniel of Biloxi, MS.

After completing Air war College in June They have three daughters: Gia, Sheri
1980, he returned to Air Force and Alicia.
headquarters as Chief of the Joint
Matters Group, Directorate of Command,
Control and Telecommunications, office

9th Annual National Conference on Ada Technology 1991 8

MANAGING THROUGHPUT WHEN USING

ADA IN A HARD REAL TIME SYSTEM

Bill Miller

Engineering Sciences Laboratory
Georgia Tech Research Institute

ABSTRAT number of Ada successes is going to make
it much harder to dodge any Ada

Anyone who undertakes the effort to requirement.

develop Ada software (or any software for
that matter) that has the potential for What then is the solution for software

overutilizing the available capacity of a contractors who are faced with the

computer, must have a structured and requirement to use Ada in a hard real-time

organized method for managing the application? Or how do you, the

throughput. This management process organization who is paying for real-time

consists not only of estimating and software, convince yourself that your

tracking the currently used throughput, contractor has the throughput situation

but also of identifying the potential under control? How does one meet the Ada

trouble spots and developing alternatives requirement and still create software that

in advance of their actual need. Any executes within the processor's available

throughput management process that is throughput?

developed must be easy to use and provide
visibility during all stages of the The typical software manager and designer

development process. This paper presents are faced with the following

a method that can be used by a development problems/constraints in hard real-time

team throughout the development cycle of systems:
an Ada project. - Use the Ada language.

- Usable throughput which could already

Most complex systems containing software be insufficient, may be restricted to

that are developed for the DOD require use some percentage of that which is

of the Ada programming language. On many available (typically 60%).

systems this doesn't prove to be much of a
problem. The code that is being produced System/software requirements,
by current Ada compilers and the although somewhat firm, will continue

efficiency of run time systems keep to "float" until shortly before the

improving. As a result there is no reason product is to be field tested. This

not to use Ada. However, even with the adds to the level of throughput
current (and perhaps future) efficient Ada uncertainty.

compilers, hard real-time systems such as
signal processing applications or missile What then is an approach to getting

guidance applications still provide such a control of this problem? At an early

significant timing challenge to software stage in a project's life, it is important

engineers, that a 100% Ada application may to develop an estimate of the amount of

not be possible. throughput that will be used by the
software. This estimate is useful not

The solution is not to throw out the Ada only from the point of satisfying program

requirement. Aside from it's life cycle managers and customers, but also gives

cost benefits, Ada as a design tool and you, the software lead or manager, an

programming language simply has too much indication of what type of challenges lay

to offer. And frankly, the increasing ahead.

9 9th Annual National Conference on Ado Technology 1991

Because this estimate quickly becomes an number. Attempting to do this for the
important number that must be defended complete software package is a quick way
and/or sold, it is important to develop to generate a number. That's about the
the best estimate possible with the small best thing that can be said for the
amount of information that is available, method, its quick ... not very accurate,
If the estimate of throughput is overly but quick.
optimistic, it may make customers and
program managers happy for a while. But A better way is to use a preliminary
this optimistic estimate could result in software design that breaks the software
undersizing a processor or processors and into functional blocks. Then use the
could result in expensive hardware above, or similar method to estimate a
redesigns at later stages of the project. time for each of the blocks. Based on the
An overly pessimistic estimate could individual functional timings, develop an
result in selecting processors that are aggregate time. An estimate based on a
too powerful for the application at hand, large number of small functional blocks
resulting in an increased and unnecessary will generate a more accurate estimate
hardware life-cycle cost or perhaps than one based on a small number of large
contribute to a project cancellation. functional blocks. It will, however,

require more effort to generate this
This estimate should initially be estimate. The following specific method
realistic and somewhat conservative but it has been used successfully by the author
should also be considered as a "living" to develop throughput estimates:
estimate that will be updated and reviewed
continually throughout the project until IA is the average number of instructions
the estimate becomes a set of actual per line of Ada code.
measurements.

SA is the average instruction speed,
Within real time systems there are usually including wait states for the
two types of time constraints that are processor.
imposed: the first time constraint deals
with those tasks that must be performed M. is Any given module
within a certain period of time (for
example: all interrupts must be serviced, Rx is the number of times per second that
statused, logged and reset within 30 the module is executed.
microseconds). The second time constraint
is that the total software package, outer L. is the estimated or measured number of
loop or whatever it's called, execute lines of Ada for the module.
within a certain period of time (for
example: one loop of the software under a Ix is the calculated number of machine
worst case situation should take no more instructions for a given module.
than 60 milliseconds and there should be
40 spare milliseconds until the start of SLTx is the calculated or measured time
the next cycle), required for the module to execute a

single loop.
Determining if the processor can
appropriately respond to interrupts is TMTx is the calculated time slice that a
fairly easy. Determining if the second module will use every second.
requirement can be met is not as easy. A
critical factor in developing any overall
throughput estimate for a real time system The following calculation equations are
is deciding if floating point operations used in building up the throughput
will be used. One method for estimating estimate for each module:
throughput involves estimating instruction
mixes and total number of lines of code . *IA
and then looking at compiler vendors' PWIG
times or developing your own time SLTx - 1. * SA
measurements and calculating a throughput

TMTx = SLTx * R,

9th Annual National Conference on Ada Technology 1991 10

Then it is appropriate to combine all of important to organize the budget in a way
the module throughput estimates into an that reviewers (who may have little, if
aggregate number: any software expertise) can understand the

throughput situation and comprehend the
N impacts of software-related decisions that

Total time=z TMTX may be driven by the relationship of the
X-1 estimate/measurement to the budget. A key

factor in developing a method for
reporting throughput is to distill the

Figure 1 is a table that should assist in status, removing the "noise-level"

not only developing the estimate but also software issues and presenting a salient,not nlydevlopng he etimte ut lso succinct summary of the situation.
in maintaining this estimate. Each of the

estimates, measurements and calculations For each module two budgets are developed:
described previously are incorporated in a 60% budget and a 95% budget. These
this table. As software development budgets, which are only developed once,
progresses, this table will transition are based upon the initial throughput
from a table of estimates to a table of estimate and are essentially a
actual, precise measurements. The proportional scaling of the Time Slice,
appropriate time to update this table TMT, for each module and the value for
would be following the completion of any Total Time.
activity for any module:

- following detailed design MM is Any given module

completion T60B x is the 60% budget.
- following completion of coding
- following unit test T95B. is the 95% budget.
- following software integration

Once an initial estimate of throughput is
developed, it is necessary to develop a
throughput budget and to also develop a
method for measuring and reporting status
against the established budget. When
developing a budget it is extremely

Execution Lines Number of Single 1 Second

Module Name Rate of Ada Machine Loop Time
Times/Second Instructions Time Slice

Total Throughput / 1 Second

Average Machine Instructions / Line of Ada: I Average Instruction Speed:

Figure 1 - Throughput Development Chart

11 9th Annual National Conference on Ada Technology 1991

The following calculations are used to The Language indicates if the
develop values for the throughput budgets throughput estimate for the module is
for each module: for a purely Ada module, a mixture of

Ada and assembly or pure assembly.
T60D1 - (TNT1 / Total Time) • .6

- The Estimate/Measurement is the
T95B3 - (TNT. / Total Time) * .95 throughput number taken from the 1

Second Time Slice column of the table
in Figure 1.

These two throughput budgets, the 60%
budget and the 95% budget are used to The 60% and 95% Budgets have been
determine the used and available describe above.
throughput as follows: the 95% BUDGET,
which, if met by each module would result The Status column is a Red, Yellow or
in a 100% processor duty cycle. Meeting Green indicator:
the 60% BUDGET would result in the not
only the processor having sufficient - Green indicates that the 60%
throughput, but it would allow for growth, budget is being met.

Figure 2 presents a method for - Yellow indicates that the
communicating throughput status that is a estimate/measurement is between
modification of the "Processing Time the 60% and 95% budgets.
Table" in DI-MCCR-80012A. Each column in
Figure exists to aid in conveying the - Red indicates that a module's
level of confidence and the potential for throughput exceeds the 95%
reduction in throughput. budget.

Using a chart such as this can give a
The Development State indicates quick and concise view of the software's
whether the software has completed throughput situation relative to a given
design, code, test or integration. If processor a processor clock rate.
development has not started, then
some consistent term to describe this
should be used.

Development Estimate/ 60% 95%
Module Name State Language Measurement Budget Budget Status

Total Throughput / 1 Second
Status Key: ThroI teen 6%u RedThouut 4 60% 6 0% T Th ryOu'gOrt 19 95% Throug put 95%

Figure 2 - Throughput Status Chart

9th Annual National Conference on Ada Technology 1991 12

At this stage not only has an initial be to develop all modules in Ada. This
estimate been developed, but also a budget will accomplish at least two objectives:
exists. As a next step, a sensitivity by coding all modules in Ada, the spirit
analysis of the estimate should be of the Ada requirement is met. Secondly,
performed to determine if the current if it should be necessary to convert some
processor can support the indicated modules to assembly language, there will
throughput load or if the processor has remain a "functioning" pseudo-code module
not yet been selected, what processors that could act as an ultimate piece of
could support the indicated throughput documentation for the module.
load. Additionally, it should be
determined if there are (would be) The methodology described above deals with
sufficient processor throughput margins to predicting throughput, measuring
allow for growth during the project. throughput and identifying current or

potential throughput problems. Once a
Growth should be expected and anticipated problem is identified what do you do?
because of additions to requirements, What you don't do is immediately start
compiler uncertainties and the like. converting to assembly language every
Experience indicates that if the first module whose timing does not meet its
estimate shows that the software would use budget.
more than 50% of a processor's available
throughput, then a problem exists a there When evaluating whether or not to develop
must be either a resizing of the hardware, an alternative implementation for a
the software requirements or both. As particular module, give careful
development for all software modules consideration to those modules that have a
begins, each module should initially be high R,, the execution rate. Any
coded, tested and timed in Ada. Following throughput savings that is accomplished,
the initial timings of a couple of will have a multiplying factor. For
modules, it will become clear as to example if you have two modules, one that
whether or not the throughput budgets are executes once per second and one that
realistic. If all/most of the modules executes at a 100 Hz. rate, assume that
grossly exceed their budgets then, once you can cut 1 microsecond from each
again, a major problem exists and the module. The net saving in the first
processor is probably undersized. If, module is only 1 microsecond. However,
however, the timings fall into the yellow the net saving in the second case is 100
or green area, with a couple of modules in microseconds.
the red area, then the processor is most
likely properly sized. In nearly all development efforts for real

Not only is it important to develop an time systems, the time eventually arrives
when it becomes necessary to improve theestimate of throughput, it is also very tingosecedmul. Thraea

important to track and update this timing of selected modules. There are a
imat tsoftarak ad opedae tis number of ways to improve the execution

estimate as software is developed. During time of a given module. The alternatives
the software development process and the

most frequently evaluated are listed belowassociated throughput tracking process, as (hr sn re fpeeec mle)

various modules transition from Green to (there is no order of preference implied):

Red, bottlenecks will be identified. As 1 Remove generics.
potential throughput bottlenecks are
identified, workaround alternatives can be 2. Rove proedur calls.is. Convert floating point calculations
developed. If an actual bottleneck isto integer or fixed point
encountered, it should not come as a

complete surprise and the previously calculations.

developed alternatives can be evaluated 4. Restructure / Redesign the algorithm.

and implemented. 5. Increase the clock speed of the
processor or reduce the memory wait

The next step is attempting to balance the states.

Ada requirement with the available 6. Convert to assembly.

processing power. As was mentioned above,
the original development strategy should

13 9th Annual National Conference on Ada Technology 1991

The option of removing generics generally approach. This approach can force new
offers only minimal throughput gains and insight into a requirement, engender
should not really be considered. Generics creativity, and generally provide the best
are an excellent productivity tool and Ada opportunity to flex one's software
designers should not be restricted from engineering/computer science muscles.
using them. However, it would be
extremely wise to look at the code that is The alternative of transparently modifying
generated by your specific compiler. This the hardware is always extremely
author has used one Ada compiler (no attractive, to the software team at least.
longer validated) whose generic This approach provides across-the-board
implementation was extremely inefficient, throughput improvements and is usually
When using this compiler, generics were feasible at later stages in a project as
not even used. new and faster pin-compatible component

become available.
Removing procedure calls in Ada is much
easier than in other languages. The Finally, the least desirable but generally
pragma inline feature allows the designer most productive alternative throughput-
to improve timing (at the expense of wise, is the convert from Ada to assembly
additional memory usage) without impacting language. For those modules that are
the level of abstraction of a module or converted to assembly language, it is
it's readability. Because most Ada recommended that the original Ada module
compilers are fairly efficient in the way be continually maintained. In this way,
code is generated for procedure calls, as was mentioned above, there is a
this alternative offers the greatest "functional" pseudo-code module that acts
return for highly repetitive modules. as an ultimate piece of documentation for

the c dule.
Floating point calculations can place a
significant load on any processor (or As each timing improvement and its
processor/coprocessor pair). Very careful associated measurement is made, the
consideration should be given to selecting throughput tables should be updated. Then
data types that are absolutely appropriate the overall throughput of the software can
to their intended use. If it possible to be remeasured or calculated. When the
sensibly convert a floating point data desired overall throughput is achieved,
type to an integer type then, by all means the conversions can end. The objective is
do so. However, beware of using long to meet the throughput requirement while
integer types without carefully at the same time retaining the largest
considering whether or not they are amount of Ada.
actually needed. There is at least one Ada
compiler around that produces long integer In summary, the following steps should be
code that runs 4 times slower than followed to implement a hard real-time
floating point code! Converting floating system using the Ada language.
point types to fixed point is also an
alternative that should be evaluated. 1. Develop an initial timing estimate
This alternative requires careful and a throughput budget.
consideration because of scaling, range 2. Initially develop all software in
and code readability implications. Ada.
Moreover, there is one Ada compiler that 3. Perform timing measurements of all
implements fixed point types by generating modules.
floating point code. 4. Assess which modules are most likely

to cause throughput problems.
A very positive approach to improving 5. Evaluate alternatives for the problem
throughput is to restructure or redesign modules.
the algorithm that is driving the 6. Implement the appropriate method for
implementation. Once again, the improving "slow" modules.
concentration should be on those modules 7. If the improvement method involves
that are highly repetitive in nature. conversion to assembly language, then
This is, perhaps, this author's preferred maintain the original Ada code of the

converted module.

9th Annual National Conference on Ada Technology 1991 14

S. Deliver both Ada and assembly
language for converted modules.

9. Deliver Ada for unconverted modules.

William L. Miller
Senior Research
Scientist & Branch
Head, Engineering
Sciences
Laboratory,
Georgia Tech
Rese a rch
Institute,

Atlanta, GA 30332,
(404) 894-7068

Bill Miller has 17 years of commercial and
military real-time software development
experience. He has been with the Georgia
Institute of Technology for 2 years and
his current primary responsibility as a
Branch Head is to lead a software project
that is integrating multiple EW subsystems
using a 1750 processor, with software
written in Ada, as the Mission Control
computer. Previously Bill was with
Rockwell International as the Manager of
Software Design at Missile Systems
Division, and lead the development Ada
software for the HELLFIRE missile. His
prior assignment was the Manager of Real-
Time Software Engineering for the
Strategic Defense and Electro-Optic
Division, guiding the development of
multi-processor, real-time image
processing and signal processing
applications. Bill has a B.S. in Computer
Science from the University of California
at Irvine and an M.B.A. from West Coast
University.

15 9th Annual National Conference on Ada Technology 1991

Evaluation of Real-Time Distributed Systems
Using Ada Concurrency

M. Bassiouni and M. Chiu J. Thompson
Computer Science Department Inst. for Simulation and Training

University of Central Florida
Orlando, FL 32765

Abstract simulated and evaluated before they are adopted
in real-life.

Recent breakthroughs in computer and
communications core technologies have made We shall use the terms "distributed simulation",
possible the interconnection of large number of "simulation networks", and "real-time training
real-time training devices via local area networks. networks" interchangeably to denote the
The effectiveness and degree of realism achieved networking of a large number of real-time
by team-training via distributed simulation are simulators for the purpose of training [6]. Each
greatly influenced by the choice of the network simulator consists of specialized hardware (a high-
topology and protocol used to interconnect the speed microcomputer, computer image generation
simulation devices. In this paper, we describe the subsystem, and sensor/control devices) bearing
design approach used to build Ada models for the resemblance to the interior of the simulated
performance evaluation of network protocols vehicle (e.g., tank or police car). Each simulator has
suitable for real-time distributed simulation. The its own local copy of the database describing the
paper describes the structure of the Ada software, simulated environment (e.g., city streets, buildings,
highlights the important task inter-communication terrain). As the crew of the simulated vehicle
and synchronization aspects used in the design of operate as they would in the real-life vehicle, the
the models, and presents examples of the appropriate visual scenery is displayed on the CRT
performance results obtained via these models. screens of their vehicle, as well as those of other

vehicles in its sight range. It is obvious that the
Key Words: distributed simulation, Ada simulators participating in a training session must
concurrency, network protocols, real-time training communicate with each other while carrying out
systems. the simulation. It is the responsibility of the

underlying local area network (LAN) to provide
each simulator with a reliable and fast mechanism

1. Introduction to send and receive the information pertaining to
the simulated activities.

Recent breakthroughs in several computer and
communications core technologies have made The networking of real-time interactive simulation
possible the interconnection of large number of training systems departs from the traditional use
real-time simulators (special purpose hardware) of a computer network, whose function would
via local area networks. Two main normally be to provide sharing of computing
applications/advantages of such networks are: resources among multiple users (nodes) on the

network. When used to interconnect real-time
(1) To provide a low-cost effective tool for the simulators, the network is used almost exclusively
training of personnel in applications involving for communication of process state information
interactions among mobile vehicles. Examples of between the simulators engaged in the training
such applications include training exercises for exercise.
police forces, fire/ambulance services, and military
combat fighting. The Institute for Simulation and Training (IST) at

the University of Central Florida has established a
(2) To provide an effective "test before you build" Network and Communications Technology
development tool to be used for evaluating Laboratory (NCTL/IST) dedicated to performing
proposed modifications in existing systems, as well research for the purpose of enhancing the
as an aid in designing/developing new systems. networking capabilities of distributed simulations.
Tactics and coordination strategies might also be This laboratory houses a number of real-time

9th Annual National Conference on Ada Technology 1991 16

simulators (different types of simulated ground finished, the token is passed to the node
and air vehicles) and is the center of several downstream which then gains the right to
research projects dealing with the various aspects transmit. Since there is a single token on the ring,
of real-time distributed simulation. In this paper, only one node can be transmitting at a time. Other
we describe the design approach used to build Ada (non-transmitting) nodes, however, continuously
models for the performance evaluation of network receive the bit stream, examine it and repeat it
protocols suitable for real-time distributed onto the network (i.e., place it on the medium to
simulation. The Ada models have been developed the next station). A station repeating the bit
to provide a tool that can predict'the performance stream may copy it into local buffers or modify
of simulation networks and to gain valuable insight some control bits if appropriate. A prototype
into the problems associated with the token-ring scheme for real-time simulators has
interconnection of real-time simulation devices, been recently completed at NCTLIST.
The models are also being used to complement the
experimental network testbed at NCTLAST. The architecture of FDDI specifies a dual (counter

rotating) token ring configuration that provides
2. Network Configuration Models point-to-point connections between every pair of

adjacent nodes on the ring. In normal operation,
Various choices exist for the implementation of a data packets circulate between the nodes using a
LAN [1, 2, 3, 5, 71 (e.g., transmission medium, single ring. The purpose of the dual ring is to
topology, access protocols, etc.) to interconnect gracefully recover from failures due to breaks in
simulation devices. In this paper, we limit our the transmission medium. Figure 2 shows a typical
discussuion to token-based network protocols. FDDI configuration that might be used to connect
Specifically, we describe a simulation approach real-time simulation devices. Stations (i.e.,
using Ada which is suitable for token-ring and simulators) are shown as nodes and connected in
FDDI local area networks. The token ring the form of a loop. Normally each simulator will
configuration has a loop topology and employs a be directly attached to the ring, but FDDI also
non-contention protocol that avoids collision by a allows the use of concentrators which can connect
token-passing mechanism [3, 4]. Figure 1 gives a a number of stations to the ring. In simulation
block diagram of the basic configuration of the networks, these concentrators might be used to
token-ring LAN. Simply stated, a token-passing connect either a group of nodes which belong to
ring is a LAN with a loop topology in which a token the management and control of the training
(a unique bit sequence in a data packet) is passed exercise, or to connect a group of regular nodes
around the network, in a round-robin fashion, that are physically located near each other.
from one node to the next. Contention for
transmission is resolved by stipulating that only 3. Properties of Networked Training
the node currently in possession of the token is
allowed to transmit a packet, or a sequence of The application of networks to interconnect real-
packets, onto the ring. When the transmission is time simulators (for the purpose of training) has a

Fig. 1 Token ring network topology

17 9th Annual National Conference on Ada Technology 1991

primary ring - c
redundant ring .c ,

Fig. 2 An example of FDDI topology

number of characteristics and requirements. Recall 4. The Ada Simulation Model
that the main function of the LAN in this

application is to communicate state update In this section, a high-level description of an Ada
messages. When the state of a simulator changes simulation model used in evaluating and predicting
(e.g., due to change in position or velocity, physical the performance of token-ring local area networks
destruction, etc.) the simulator broadcasts a data [3, 4] will be given. A similar simulation model has
packet of type "state update". This message is alobedvlpdfrFDIL s[1.SneDD
delivered by the network to every~ other simulator iso primril aev ok-aed schemeLA~ th.ine basior node on the network. Upon receiving a state

Fig.g statg decrbe exalow for the toopology

update message, each simulator updates its own dsg taeydsrbdblwfrtetknrnlocal database and displays any appropriate simulation model applies also to the FDDI
application is toes Tcommicatestathis fupatin counterpart. The concurrency mechanism in Ada
chages. o n t e sens To acomlaths fctns has been used in our models to simulate the

(gduner toa- ge inconsitin ohr veiy, phsia thaefrac ftknrn oa rantok

destrutioni e costaits the des f a different concurrent activities within a simulation

simuatin LN mst atisy te flloing (training) network. A task in Ada may have entriesreaue e t e uwhich can be called by other tasks.

(i) The network must provide connectionless data Synchronization between two tasks occurs when
transfer services (datagram services) that include the task issuing an entry call and the one
chaneson pit srns. , amlisthiunand accepting it establish a rendezvous. Communication
pont-oa-int trnsfra, mueticasting, in both directions is achieved via the parameters

(input parameters) passed to the task accepting
(1) The ntorsm s pdelayincd b aat . the entry call and those (output parameters)
(2)hetransisi day sevincurredsby) apacreturned to the task issuing the entry call. Thispoint-to-pointi an , [. apowerful synchronization facility has provided us

(3)rTo cnag owith a convenient and elegant tool for modeling
rdthe parallel activities of the simulation network

as close to zero as practicably possible. The impact and th underlying network

of lost packets on the fidelity of the training and the underlying networking protocol. The

exercise depends on the type/contents of the process interaction model of Ada has been used in

packet. For example, the loss of a single state our simulation to map the different entities and

update packet from a slowly moving vehicle can be activities of the simulated network to

usually tolerated and would not much degrade the corresponding Ada tasks. The following task types

animated imagery displayed by other simulators. are the major generic entities used in the

This is because the simulator of this vehicle will simulation of token ring LANs. Fig.3 depicts the

soon broadcast another state update message after interactions among these different tasks

a small time interval and, hence, its coordinates 1. Source task: is used to represent a vehicle
in the database of other simulators will be simulator on the network. A task of this type is
corrected. created for each such simulator

9th Annual National Conference on Ada Technology 1991 18

Fig. 3 Simulation model for token ring LAN

2. Node task: is used to represent the point of -- task specification --

contact of each network node with the ring task type sourcejtype is
medium. It performs the functions of the medium entry input (id, pktlength: in integer;
access control(MAC) layer protocol and ensures sim..t, meanjiit: in float);
that the token-ring protocol is executed. A task of end sourcejtype;
this type is created for each network node.
3. Server task: is used to implement and control -- task body-
the flow of data on the ring. A task of this type task body sourcejtype is
corresponds to one of the point-to-point accept input (id, pktlength: in integer;
connections of the token ring LAN. simjt, meanjlit: in float) do
4. Scheduler task: (not shown in Fig. 3) is used to -- get input parameters
order timed events and control the sequencing of end input;
activities of the entire simulation. -- subscribe to the scheduler task
In Ada, a task is composed of a specification and a sched.addUser;
body. The specification declares entries in which -- become a producer of the Node task
the data type and the input/output status must be nodes(my..node).addProd;
specified clearly for each parameter. The body is
the code that defines the activities of the task. -- main processing phase --

Below, a brief functional description of each task -- get arrival time for the first packet
is given. The description is written in pseudo code t := erand (meanlit);
and only aspects related to the synchronization of -- request delay to wait for arrival
the parallel activities within a token ring sched.reqDelay (t, my..id);
simulation LAN are considered. -- transmit the first packet

nodes(mynode).transReq(pktlength,t);
Source Task while simulation time has not expired

loop
In this task, local traffic is generated according to a -- get the arrival time of next packet
specified input method (e.g. using traces of real tI := erand(meanlit);
data or random stochastically generated inter- sched.now(time) -- get current time
arrival times such as exponential, uniform, fixed if time < t+tl then
with jitter, etc.). Whenever there is a packet in the -- wait for arrival of packet
queue, the Source task makes a request via an sched.reqDelay(time-t-tl,myjid);
entry call to its Node task to transmit the packet to end if;
the network. The request may be blocked until the. -- update the packet arrival time
packet is accepted by the Node task. t := t + tl;

19 9th Annual National Conference on Adla Technology 1991

-- transmit this packet accept transReq (length: in integer;
nodes(my-node).transReq(pktlength,t); start-t: in float) do

end loop get a new local packet
- make it a pending packet

- termination phase -- end transReq;
- no longer a producer of Node task or

nodes(my-node).dropProd; accept putmsg (Item: in nltem) do
- no longer a user of Scheduler -- get token/message-packet
sched.dropUser, if msg is the free token FT then

end source-type; be&
record the token cycle time
if there is pending packet then

Node Task append FT to its rear; endif;
msgReady := True;

The Node task acts like a server ready to accept end
envy calls from its Source task or its neighboring else -- message is a packet
Server tasks. When a packet from the producer begin
(upstream) Server arrives, the Node task examines if packet is mine then absorb it
the type of the incoming packet. If it is a token, else msgReady := True;
the Node task checks whether there is a pending end
local packet and if so, appends the free token at end putmsg;
the rear of the packet and make them available to or
the consumer (downstream) Server. If it is a when msgReady =>
message packet, the Node may absorb it or make it -- unblock consumer server
available to the consumer Server depending on accept getmsg (Item: out nltem) do
whether this packet was locally generated. if this was my pending packet then

Ok-local-packet := True;
-- task specification -- end getmsg;
task type node-type is or

entry input (simret, transrate: in float; accept addProd do
FT_length, CTlength: in integer); -- increment producer count

entry addProd; end addProd;
entry dropProd; or
entry addCons; accept addCons do
entry dropCons; -- increment consumer count
entry transReq (length: in integer; end addCons;

startt: in float); or
entry putmsg (nodeltem: in nltem); accept dropProd do
entry getmsg (itemt: out nltem); -- decrement producer count

end node-type; end dropProd;
or

- task body -- accept dropCons do
task body node-type is -- decrement consumer count

-- set up parameters end dropCons;
accept input (sim.t. trans-rate: in float; end select;

FTjength, CTjlength: in integer); end loop;
end accept; -- print statistics --
sched.addUser; -- subscribe to scheduler
sched.passive; -- initial state -- termination phase --
- wait for first producer sched.dropUser -- withdraw
accept addProd do end node-type;

increment producer count
end addProd; Server Task

-main processing phase --while there are clients loop The Server Task is used to implement and control
select the flow of data in the network. Each Server task

when Ok-local-packet -> takes the packet from its producer (upstream)
Node and delivers the packet to its consumer

9th Annual National Conference on Ada Technology 1991 20

(downstream) Node. The Server task also keeps packet from its producer node but the packet is
track of the progress of propagation of the packets not available.
that it has transmitted and which have not yet
arrived at the downstream node. -- task specification --

task sched is
- task specification -- entry now (ctime: out float);
task type server-type is entry reqDelay (dt: in float; tid: in integer);

entry input(id: in integer, simt, entry addUser;
prop-time, transrate: in float); entry dropUser,

end server-type; entry passive;
entry active;

-- task body -- end sched; -- specification
task body server is

- initialization phase -- -- task body --
accept input (id: in integer, simt. task body sched is

prop_time, trans-rate: in float) do -- initialization phase --
end input; -- accept the first user of Scheduler task
- request to be a user of Scheduler accept addUser do
sched.addUser, -- increment client and active count
- inform adjacent nodes end accept;
nodes(upstream).addCons;
nodes(downstream).addProd; -- main processing phase --

-- accept requests while there are clients
- main processing phase -- while client count > 0 loop

while simulation time has not expired do select
-- request packet from producer Node accept addUser do
nodes(upstream).getmsg(item); increment client and active count
- let ttrans be the time remaining for end addUser;
-- the transmission of current packet or
- let tpropag be the remaining time accept dropUser do
-- until first traveling packet arrives -- decrement client and active cou,'t

- at downstream node end dropUser;
while tpropag < ttrans do or

begiti accept passive do
sched.reqDelay(tpropag,my-id) -- decrement active count when a
nodes(downstream).putmsg(item); -- task enters passive state
update ttrans and tpropag end passive;

end; or
sched.reqDelay(ttrans,myid); accept active do

end loop; -- increment active count when a
-- task in the passive state

- termination phase -- -- becomes active
nodes(downstream).dropProd; end active;
nodes(upstream).dropCons; or
sched.dropUser, accept now (ctime: out float) do

end server-type; -- set ctime to current time
end now;

or
Scheduler Task -- handle a delay request

accept reqDelay (dt: in float;
The Scheduler maintains a list of all the tasks that tid: in integer) do
make delay requests and reactivates these tasks at -- decrement active count
the proper time. When there is no active task in -- add task to the waiting list
the system, the Scheduler reactivates the task at end reqDelay;
the head of the list and advances the clock end select;
accordingly. A task may be in the waiting state, in
the active state, or in the passive state. The latter -- when there is no active task and
state is used when a task is blocked indefinitely, -- the waiting list is not empty
for instance, when a Server task requests to take a

21 9th Annual National Conference on Ado Technology 1991

if active count - 0 and list not empty For the token-ring model, the recreation of the
advance clock "free token" onto the ring is assumed to follow the
increment active count "early token release protocol". According to this
reactivate and delete head of list protocol, the transmitting station (the one which

end if. removed the free token from the ring) recreates
end loop; the free token and puts it onto the ring

immediately after it finishes transmitting its
-- termination phase -- packet. This protocol results in better LAN

end sched; throughput and smaller packet delays than
protocols that require the header (or the tail) of
the transmitted packet to complete one cycle

In addition to the above entities, several auxiliary around the ring before the free token is recreated.
tasks/packages are utilized for the purpose of Another factor affecting the performance of the
collecting statistics, functions definition, user token-ring scheme is the length of the free token.
interfacing and task dispatching, etc. The software Although this length has been used as a variable
system is implemented in a modular fashion with in our various tests, the results reported in this
emphasis on ease-of-modification and the use of section use a length of 24 bits (24 bits is the length
parameterized values that facilitate the testing of a used in many commercial token-ring
wide range of network characteristics and the implementations).
simulation of different load conditions and
different network parameters. The FDDI scheme uses an underlying token passing

mechanism with appropriate modifications to
handle synchronous data. If the FDDI parameters

S. Performance Results (thresholds and initial timer values) are carefully
chosen, the FDDI LAN operates smoothly without

The Ada simulation models have been used to gain (or with very few) reinitializations. In this case,
insight into the performance of simulation the performance of FDDI is basically that of a high
networks under both the token-ring and FDDI speed token ring. Unlike ETHERNET (2] whose
protocols. The models have been used to predict performance deteriorates a high traffic loads due
the performance of these two schemes when used to excessive packet collisions, the overhead of
to support a large number of real-time simulators. FDDI token management does not result in
In what follows, we give examples of the results throughput decline when the traffic load on the
obtained by these models, ring increases. Figure 4 shows a typical

40-

0
Z 20-

10 20 30 40 50 60 70 60 90

Traffic Load (Mbits/sec)

Figure 4

9th Annual National Conference on Ada Technology 1991 22

1.001

0.6-

0.4"

0.2"

10 20 30 40 So 60 70 80 90

Traffic Load (Mbits/sec)
Figure 5

relationship between the throughput and trattic Acknowledgements
load in a token ring LAN. Since the token ring and
FDDI protocols uses a collision-free scheme, they This work has been supported by the Defense
do not suffer from the problem of declining Advanced Projects Research Agency (DARPA) and
performance at high loads. Throughput around 90% the Army's Program Manager for Training Devices
of the transmission medium bandwidth can be (PM TRADE) under Broad Agency Announcement
easily obtained in token ring and FDDI LAN's #88-01, Contract N61339-89-C-0043. The views
(compare this to the ETHERNET protocol whose and conclusions herein are those of the authors

throughput is usually limited to about 65% of the and do not represent the official policies of the
medium bandwidth). Figure 5 shows a typical funding agency, the Institute for Simulation and
relationship between traffic load and the average Training, or the University of Central Florida.
time required for a packet to be successfully
communicated through the network. References

6. Conclusions [1] ANSI Standard X3.139 "FDDI token-ring

media access control (MAC)" American

In this paper, we have described the high-level National Standard, 1987.
details of Ada simulation models used to evaluate
the performance of networked simulation [2] IEEE/ANSI Standard 8802/3 "Carrier sense
(training) systems under token based network multiple access with collision detection
protocols. The Ada models are also being used to (CSMA/CD) access method and physical layer
perform a comparison study and evaluate different specification" IEEE Computer Society Press,
design decisions. Some of the numerical 1985
performance measures that are being gathered by
the models are: the impact of traffic load on [3] IEEE/ANSI Standard 8802/5 "Token-ring
network throughput, the utilization of the access method" IEEE Computer Society
transmission medium, and the distribution of delay Press, 1985.
times of transmitted packets. Further work is
underway to use these models in evaluating [4] Dixon, R. ; Strole, N. and Markov, J. "A token
schemes to incorporate real-time voice services ring network for local data communication"
within simulation networks. IBM system Journal, Vol. 22, 1983, pp. 74-

62.

23 9th Annual National Conference on Ada Technology 1991

[51 Kummerle, K. and Reiser, M. "Local area
networks- major technologies and trends" in
.1 "Local Area Networks," edited by K.
Kummerle, J. Limb and F. Tobagi, IEEE Press,
1987, pp.2 -2 7 .

[6] Pope, Arthur "The SIMNET network and
protocols" BBN Report No. 7102, BBN
Communications Corporation, MA, July 1989.

7] Stallings, W. "Local networks" ACM
Computing Surveys, Vol. 16, No. 1, March
1984, pp. 3-42.

About the Authors

U. A. Basslouni received his Ph.D. degree in
Computer Science from Pennsylvania State
University in 1982. He is currently an Associate
Professor of Computer Science at the University
of Central Florida, Orlando. His current research
interests Include computer networks, distributed
systems, databases, and perforr-ance evaluation.
He has authored several papers and has been
actively involved in research on local area
networks, concurrency control, data encoding, I/O
measurements and modeling, file allocation, and
relational user interfaces. Dr. Bassiouni is a
member of IEEE and the IEEE Computer and
Communications Societies, the Association for
Computing Machinery, and the American Society
for information Science.

M. Chlu is a graduate student at the
Department of Computer Science, the University of
Central Florida. For the past three years, he has
worked as a research assistant in the
Communications and Networking Laboratory at
ISTIUCF. Mr. Chiu has played a key role in the
design, coding and debugging of several simulation
programs written in Concurrent C and Ada.

J. Thompson received his BS degree in
Electrical Engineering from the University of
Central Florida in 1978. He is currently a
Research Associate for the Institute for
Simulation and Training (IST) at the University of
Central Florida, Orlando. Mr. Thompson has
technical responsibility for all IST research
activities Involving computer and simulation
networking.

9th Annual Nafional Conference on Ada Technology 1991 24

A Dynamic Preference Control Solution to the
Readers and Writers Problem*

Shakuntala Miriyalal Tzilla Elrad'

the writing or the reading process. Preference control
The problem of mutual exclusion of several in- is not available in Ada. With the facility of prefer-

dependent processes from simultaneous access to a ence control, the access to the shared data or the
critical section for the case where there are two dis- critical section can be controlled at compile time or
tinct classes of processes known as readers and writ- run time depending on the input queue of readers

rs has drawn the attention of researches for several and writers. There are different strategies adopted in
years. The readers may share the critical section
with each other . but the writers must have exclu- solving this problem. The strategy adopted here is

sive access to the shared data. Ve present here. an to be impartial to the readers and writers. Formally:
Ada like solution to ensure no starvation of either Many Readers or One Writer with the Writers Hay-
of the processes. We do this by introducing what ing a Higher Preference, But All Waiting Readers are
we call zero preference. A zero preference to an al- Given Access after a Writer has Finished: We how-
ternative is an indicatioi, to the compiler to ignore ever have split the reading and writing process into
the alternative. Complicated olutions available for start-read. end-read, start-write and end-write.
the above problem have been found difficult to im- Preference control is a race control at the task
plement. Therefore, the need for augmenting the level which tells the compiler which alternative to ac-
available languages. with some constructs to im-
plement different constraints arises. Here. we use cept when a conflict between alternatives arises.
(lvnamic preference control to solve the readers and We claim in this paper that giving preferences to

riiers problem. A solution to the same problem writers is a stronger requirement than avoiding writer
,-irig -tatic prefereice control has been presented starvation. The idea is that if a writer expresses a

wish to write by entering the queue then the writ-
ing task should be given the highest preference. so
that only the writing process is accepted. However.
avoiding starvation of the writer simply means that
the writer is accepted at some point of time. The

1 Introduction main idea of this paper is therefore achieving a fair
solution using dynamic preference control. Dynamic

1.1 Motivation preference control is more efficient than the static
preference control as the preferences change with the

The readers and writers problem has been a classical incoming scenario of the reader and the writer pro-
computer science topic for many years. A number of cesses.
solutions to this problem in the Ada language have Preference control differs from the other form of
been suggested in the literature1

. . However, these race control namely the priority control in that pri-
solutions were found to be less acceptable. As they ority is a race control at the program level which
do not solve the problem of race between the two pro- occurs outside the sflect statement in Ada. Regard-
cesses. The solutions presented here use preference less of the priority of the caller, preference controls
control to solve the problem of giving preferences to the race between alternatives within a task.

- This work is partially supported by the US Army Re-

searc CECOM and Battelle Scientific Services Program 1.2 Overview
#1800
t Department of Computer Science. University of Illinois In section 2 we discuss the need for preferences in

at Urbana-Champaign. Urbana. IL 61801. solving the readers and writers problem. In section

4 Department of Computer Science. Illinois Institute of 3 the solution using dynamic preference control is

Technology. Chicago. IL 60616. presented. The classic Ada solution to the Readers

25 9th Annual National Conference on Ada Technology 1991

and Writers problem available in literature is given in of the select alternatives, the value of these variables
the appendix. Since all the solutions are in Ada we should not change. Thus it is reasonable to expect
have avoided mentioning the finer details like package that the closed guard should remain closed and an
specifications , package definitions and the package open guard should remain open until the task per-
body. We give only the task body of the controlling forms some action. The use of a count attribute in
task the reader-writer manager and the package body a guard contradicts this expectation. Syntactically
of the whole package where necessary. since the count attributes appears in the guard of

a select statement the control is private. However,

2 Solutions available semantically the count attribute is consensus as its
value depends on an activity that is not local to the

in the literature present task. Moreover, the use of the count attribute
does not solve the problem of race between alterna-

Before we present the existing solutions in the litera- tives. It has absolutely no control over the system

ture which deal with the reader and writers problem behavior:

we would like to introduce some terminology. There are other implementation based issues in-
Experience in controlling nondeterminism in Ada volved when using a count attribute. One needs toExpenncestrained co frolln n inis nbr Aa make sure that the count, correctly reflects the num-

- an unconstrained choice from a finite number ofbeofimsnthque.Ac mnlocrig

alternatives has led to the following classification2 b
problem is when a reader enters the queue thereby

" Private Control: nondeterminism restricted causing the STARTREAD'COUNT value to be in-
by variables local to the task. Private control creased and later on decides to back out of the queue.
is considered open if the boolean expression is while the value of START-READ 'COUNT remains
true; it is closed otherwise. Only alternatives unchanged. There is no guarantee that those read-
with the open private control are considered for ers who have entered the system are accepted. A
selection by the nondeterministic construct. count of available readers using the START-READ

'COUNT, accepts as many readers as indicated by*Consensus control: nondeterminism restricted SATED'ON.Tecmie hudtk
by evirnmet a/ cmmuncaton onsraits.START-READ 'COUNT. The compiler should takeby environmental /communication constraints.

care of these problems using proper data structures.
The choices are restricted to only those for which There are solutions which avoid the use of the
the communication request for the entry has count attribute using static preference control in" .
been queued. Consensus control is considered However, these solution do not concentrate on a fair
established if the rendezvous can be established. solution (i.e.) avoiding the starvatio of the reader

" Hybrid Control: nondeterminism restricted and writer process. In the next subsection we pro-
by both local boolean and environmental con- vide a different solution using static preference con-
straints. Hybrid control is available if private trol after explaining the need for preference control.
control is open and consensus control is estab-
lished. 2.2 A Solution using static

2.1 A solution using the count preference coiltrols

attribute in Ada Preference controls are race controls at the task level

The solution using the count attribute to solve the which tell us that when there is a conflict between
rcaders and tcrilcrs problem in4 is Solution I in the two tasks which should be accepted. Each entry iD-

Appendix. Here we present sonie cominents and draw- side a nondeterministic construct may have a pref-

backs of the solution. erence. which is an integer value of the predefined

The use of a boolean guard WRITERPRESENT subtype prcf. A lower value indicates a lower degree

is a reasonable evaluation criterion to determine the of urgency. The range of preferences is implementa-
state of the local variables. Since the task execut- tion defined. A detailed description of the syntax for

ing the select statement is waiting for a call to one

9th Annual National Conference on Ada Technology 1991 26

3 ~accept ENDRED;
introducing preference control in Ada is defined in3 READERS E READERS - 1;

Ada language does not contain any primitive for end END.READ;
controlling race between alternatives at the task level.

Ada can use other available primitives to simulate or
preference control. The authors in2 have argued that prefer 3:
such a simulation of preference control using available
primitives is very complicated and unacceptable by when not WRITER-PRESENT
software engineering standards. Consider a resource and READERS - 0 =>
manager, that continuously releases and regains re- accept START.WRITE;

sources. Since the manager must have a resource in WRITER-PRESENT := TRUE;
order to release it, a wise manager should give prefer- end START-WRITE;
ence to the regaining of the resources. The availabil-
ity of a resource can be maintained by private control; or
the requests to release a resource can be checked by prefer 1:
consensus control; but no primitive exists to express accept ENDWRITE;

preference control, which is necessary in this case to WRITER-PRESENT := FALSE;
give preference to the release of a resource. end END-WRITE;

We now classify preference control to be static for I in

and dynamic. Static preference control is to give the 1. . . START-READ 'COUNT loop

preferences in the program at compile time as shown -- readers arriving after
below, whereas in dynamic preferences the prefer- -- the evaluation of the
ences given to alternatives change with the dynamic -- count will not be

nature of the problem itself. -- accepted here
Consider the following Controller which we call

R_WV2 which has static preference control. accept START-READ;
Solution 2: READERS := READERS + 1;

end START-READ;

task body RW_2 is end loop

READERS: NATURAL := 0; end select;

WRITERPRESENT:BCOLEAN : FALSE; end loop;

begin end R_W2;

loop Package RESOURCE is the same as in solution 1
select: shown in the appendix. except that the task R_.W_2

replaces task RW1 and calls to RAV_ are replaced
prefter 2: by calls to RW_2.

In this solution we give highest preference
when not WRITER-PRESENT to STARTWRITE. After a writer is accepted all the

and START-WRITE'COUNT=O => waiting readers are accepted. This ensures that wait-

accept START.READ; ing readers are accepted immediately after a writer

READERS = READERS + 1; is accepted. Moreover we ensure that writers do not

end STARTREAD; starve as we give preference to writers over readers.

and do not accept the START-READ if STARTVRITE
or 'COUNT is greater than zero. Here equal value of
p~refer 1: pi.frr means that any alternative can succeed.

27 9th Annual National Conference on Ada Technology 1991

Here we have introduced a mechanism for solving
the race between two tasks by indicating at compile preference control. We introduce a concept of assign-
time which process should have a higher preference. ing a value zero to the preer variable. If the value
However, We haven't really dispensed with the count to the compiler to ignore the alternative following it.
attributes. We wish to point out here that the use of The compiler toigore the aln wing t.
count attribute is a kind of availability control which tises less a mbiu te dea whae
if dispensed with will cause starvation. In the above nate whe omprace w eave
solution if we remove the STARTWRITE 'COUNT 'indicated to the compiler exactly which alternatives
attribute the writers could starve if there was a sce- have to be considered we have dispensed with the
nario in which there is a continuous inflow of readers
while the writer is waiting, as the value of READ- to start with the value of prefer variable given to,

ERS will never be zero. The above solution shows END-READ and END_.WRITE alternative is not

that by using a prefer construct in the code, an in- important.We therefore assign a value zero to them.

dication is given to the compiler to force to accept Solutton 3:

entry from writers first and then from the readers.
Here the use of preference is to have a better con- task body RW_3 is }
trol over the system behavior when more than one READERS: NATURAL 0;
alternative is available. We thus argue that prefer- (SW,EW,SR,ER) :- (2,0,1,0);
ence control is a much stronger requirement than the -- Consider only start-read
problem of starvation of writers. -- or start-write at the

The solution presented here differs from that ins -- In case of race prefer
in that here we have a stronger requirement that none -- start-write.
of the processes should starve. In the solutions pre- begin
sented in5 it is possible that reader starvation can loop

occur. This is possible if there is a :ontinuous inflow select
of writers and the local variable whcih keeps track
of the readers is never incremented inspite of readers prefer SW:

having entered the system. We argue that the need
to get away with count attribute to ensure no conflict when READERS = 0 >
between syntax and semantics of the count attribute, accept START-WRITE;
is a trade-off for a fair solution. (SW,EW,SR,ER) := (0,1,0,0);

Here, we have introduced a mechanism which will -- Accept only
solve the race between tasks by explicitly giving pref- -- end-write; The rest
erences which adds to the efficiency of the solution to -- are unacceptable.
avoid starvation. The next logical question would be or
to have dynamic preference control making the pref-
erence control to vary in tune with the scenario of prefer EW:
readers and writers. We present a dynamic prefer- accept END.WRITE;
ence solution to the rcadcrs and writers problem in (SW,EW,SR,ER) := (1,0,2,0);
the next section. --After end-write give

--to readers. End-read
3 Solution using dynamic --and end-write are not

Preference control or --available

Here we present a solution that uses dynamic prefer- prefer SR:

ence control which is more powerful than the static accept START-READ;

9th Annual National Conference on Ada Technology 1991 28

READERS := READERS + 1; writing process.

for I Dynamic preference control allows us to alternate

in 1. ... STARTREAD 'COUNT between the reader and the writer processes without

loop causing starvation of either of the processes, We see

accept START.READ; that with dynamic preference control there is a bet-

READERS :a READERS * 1; ter control of the calls accepted because, after each

end STAT-READ; accept statement we know what best to accept next.

end loop; This will be more efficient than static preference con-

it (START-WRITE 'COUNT > 0) trol. If we always gave a high preference to WRITE,

then (SW,EW,SRER) :=(0,O,O,1); and if there were no writers available, then we still
else (S,EW,SR,ER):=(0,0,2,1); have to check first for writers and then for readers.
endif This is inefficient.

end START-READ; This solution still has an attribute which is se-

It a writer is waiting mantically consensus. To do away with the attribute

initiate end-read. Else completely would be difficult as we are looking for

accept more readers. a solution without starvation of either of the pro-
cesses. We have shown through our solution that use

prefer ER of dynamic preference control is a good mechanism

accept END-READ do to solve the problem of races between tasks. A solu-

READERS = READERS - 1; tion which uses pure private control and preferences
end ENDREAD; may not completely solve our problem as there is no

if READERS = 0 mechanism to control the behavior according to ar-
then (SW,E,SR,ER):=(2,,0,0); rival scenario. This can be done only with the helpelse (SW,EW,SR,ER):=(0,0,0,l); of consensus control.

endif Preference control is presently not available in

Complete reading and then Ada. We can simulate static preference control in

-accept start-write. Ada. using nested select statements. but simulating
dynamic preferences will be much more complicated

end select; and hence it may be simpler to augment the Ada

end loop; language with preference controls.

end RHW-3; 4 Conclusion
Initially either reading or writing can be done.

If Start.WRITE is accepted then the only thing we
can do next is END-WRITE. This is indicated to the Various solutions for the radcrs and wrirs problem

compiler by giving a pffr zero value to all oher a)- reswhere neither the r iadcr nor the writcr starve wereteriiatives. After ENDWRTIE . which indicates thle presented. WVe see that in all the solutions ii was not

terntivs. fte E.N-INRTI .,hicl inicaes he ossible to do away with the coun attribute comi-
completion of writing process. we give highest prefer- pleto T o awa~v th the are o -

ence to the reading process. Since we can allow mul- pletely. Thie reason for this is that we are looking for

tiple readers we allow as many readers waiting in the asot wich wuld deaith the r ee
queu asindcate bytheSTARREA 'CVNTtasks without causing starvation of either process.
queu asindiate by he TARTREA ICO NTTo do away with the count attribute it would be nec-

attribute. After reading it is logical to check for wait- T do w ovite iblt attru i woulerne

in- writers and if there are. ENDREAD is given essary to provide availability control in an alternate

highest preference, if not, then more readers are ac- manner. The purpose of this paper is to show how

cepted. And finally after ENDREAD, when all the dynamic preference control improves the solution to

reading is completed highest preference is give to the the problem of races between tasks. Ve introduced

29 9th Annual National Conference on Ada Technology 1991

the concept of zero preference. We achieved dynamic Appendix

control by indicating to the compiler what alterna-

tives are to be disabled or in other words indicating Consider the following body for the controlling task

to the compiler to exclude those alternatives from named R.W1 which is a solution for the readers

race. This paper illustrates through the various so- and writers problem using strategy 1'

lutions the inadequacy of Ada language for problems Solution 1:

which involve race at the task level. The dynamic

preference control principle can be extended to many task body RW.1 is

other concurrent and distributed problems. It would READERS: NATURAL := 0;

be important to add preference controls to the exist- WRITERPRESENT:BDOOLEAN: FALSE;

ing concurrent languages as simulation of the same begin

often leads to complicated and unreadable programs. loop
select

when not WRITER.PRESENT

References and STARTWRITE'COUNT=O =>

accept START.READ;

[1] Alan Burns. Concurrent Programming in ADA. READERS a READERS * 1;

Cambridge-University Press, Cambridge London, end START-READ;

1985. or

i2 Tzilla Elrad and Fred Maymir-Ducharme. Intro- accept END-READ;

ducing the preference control prmitive experience end ENDREAD;

with controlling nondeterminism in ada. Pro. or

cecdings of the 1986 Washington Ada Symposium. when not WRITER-PRESENT

Lur l, Maryland., 1986. and READERS = 0 =>
'3 Tzilla Elrad and Fred Maymir-Duncharme. Sat- accept START.WRITE;

isfying emergency communication requirements WRITER-PRESENT := TRUE;

with dynamic preference control. Proceedings of end START_WRITE;

th(sizth Annual Conference on Ada Technology, or

Arlington, Virginia. 1988. accept END-WRITE;
WRITER-PRESENT :

= FALSE;

4' Narain Gehani. ADA Concurrent Programming. end END-WRITE;

Prentice-HaU, INC, Englewood Cliffs, NJ 07632. for I in

1984. 1...STARTREAD 'COUNT
loop

5 David Levin, Daniel Nohl. and Tzilla Elrad. -readers arriving

A clean solution to the readers-writers problem -- after the evaluation

without the count attribute. National ADA tech. -- of the count attribute

nology conference. 1989. -- will not be accepted

accept START-READ;

READERS := READERS * 1;

end START-READ;
end loop;

end select;
end loop;

end R_W_1;

9th Annual National Conference on Ada Technology 1991 30

The package body is:

package body RESOURCE is

S:SHAREDDATA :- ...;
--the shared data

--specification and body

--task RW_1 comes here

procedure

READ(X:out SHAREDDATA) is

begin
R-WI.STARTREAD;
I :- S;

R.JI.END-READ;
end READ;

procedure
WRITE(X:in SHARED-DATA) is

begin
RWI.STARTWRITE;
S := X;

RW-I.ENDWRITE;
end WRITE;

end RESOURCE;

31 9th Annual National Conference on Ada Technology 1991

The RAPID Center Reusable Software Components (RSCs) Certification Process

Joanne C. Piper & Wanda L. Barner

U. S. Army Information Systems Software Development Center-Washington

ABSTRACT engineer, has been the step by step guide
for the certification process. In order
for the process to occur, RAPID has

Reusable code does not happen by identified three stages: defining the
accident. The effort to reuse a module RSC, developing the RSC. and certifying
includes obtaining the module, making the RSC.
changes to the module, and adding or
adjusing a system of modules to make it
work. Through its certification
process, the Reusable Ada Products for REUSABLE SOFTWARE COMPONENT
Information Systems Development (RAPID) HEFINITION
Center minimizes, identifies, and
isolatem implementation dependent
characteristics of Ada software, thus To fulfill the needs of a RAPID Center
creating and promoting reusable code. user, Domain Analysis Is performed for
The certification process includes the user's Standard Army Management
defining the types of components for Information System (STAMIS). Reuse
reuse, processing the components through opportunities are determined and the
RAPID's developmental phases, and reusable components matching RAPID's
providing the components a RAPID definitions are identified and obtained.
certification level. An RSC was originally defined as a source

code component consisting of functions,
procedures, or packages. Because code is
not the only reusable software product,
the definition was expanded to include
five other components: requirements,

INTRODUCTION design, implementation, templates, and
generic architectures.

The RAPID Center's primary goal to
promote Ada is accomplished by obtaining
general purpose, adaptable software Requirements which are abstract
components that have maximum potential ideas, identify the operating
for reuse. The RAPID Center has environment, the user's needs and tasks,
established procedures and guidelines to and the data (objects) to be incorporated
certify and include Reusable Software by the system. They are stated in a
Components (RSCs) in the RAPID Center vocabulary that is common to all readers.
Library (RCL). The RCL is an automated Often the they are presented in the form
catalog and retrieval system that allows of a Preliminary Design Review.1

a user to identify and extract RSCs
meeting specific functional requirements.
An important part of the procedures has Desigjn components include compilable
been the establishment of the RAPID specification, logical data models,
Configuration Control Board (RCCB) which functional description documents,
monitors the process and approves an RSC structure diagrams, data flow diagrams,
for inclusion in the RCL. The RCCB and existing user's manuals.
consists of the senior representatives
from Quality Assurance, Configuration
Managemnt, Ada Engineering, and RCL Implementation components include
Operations. The Final RAPID Center package specifications, package bodies,
Reusable Software Component (RSC) generics, subroutines, subsystems,
Procedures, written by RAPID's senior Ada systems, and interactive test suites.

9th Annual National Conference on Ada Technology 1991 32

comrnents include but are not limited
RAPID has not formally defined to:"

reusable Templates and Generic
Architecture components. It has been Screen/Window Management
determined that it would be best to Interfaces for Common
presently concentrate on populating the Platforms
RCL with low level software components. Forms

Communications/Networking
Tables
Reports

DOMAIN ANALYSI8 GROUPS Access Security/Validation
Suspense/Schedule Management
Data Dictionaries

Domain Analysis further groups each Relational Database Management
previously defined type of component Ada-SQL Binding
according to the level of abstractions or Date/Time Conversion
functional categories. The level of File Maintenance
abstractions provide the perspective for External Entity Interface
the search of reusable components. The Management
functional categories provide the actual
list of RSCn to obtain. RAPID uses
three levels of abstractions--Basic IDENTIFICATION
Software Engineering Lgvel, Tool Level,
and Application Level.

A category list is established for each
The Basic Software Engineering Level user of the RCL. RSCs are then obtained

provides subroutines of the common by the RAPID Center from public domain,
software building blocks (stacks, queues, Commercial-off-the-Shelf (COTS), and
linked-lists, trees) and functions (input government sources. There are three
validation, mathematics, string names that Identify the current state of
manipulation, file management, etc.). 9 an RSC--Proposed RSC, Candidate RSC, and

RSC. Once the RCCB reviews and approves
the Proposed RSC category list, a

The Tool Level may include source Software Development Folder (SDF) is
code generators, form generators, created. The SDF contains printed forms
compilers, linkers, and loaders that are for each certification process step--
functionally useful for processing, coarse evaluation, preparation, testing,

documentation, classification, and
The Application Level includes maintenance. If it is determine during

standard operations, such as sequential the coarse evaluation that to prepare the
file transaction updates. Proposed RSC is too costly, that RSC will

be rejected by the RCCB but the SDF will
remain on file.

REUSABLE SOFTWARE COMPONENT
DEVELOPMENT

COARSE EVALUATION
During the development stages, the
required RSCs determined by Domain
Analysis are placed on the High Demand The coarse evaluation forms have been
Category list. It is used to identify developed by RAPID's senior Ada engineer.
and evaluate components. The forms capture relative information

determined during Domain Analysis and
subjective visual analysis of the

CATEGORY LISTS component.

1. A Reuse Potential Evaluation

Domain Analysis categorizes the RSCs that Worksheet contains the numeric ratings
are grouped functionally by a system's such as:"
architecture. The list driving the
population of the RCL thus far has a. Source Lines of Code - the
consisted of those RSCs that are basic physical lines of the source component
software building blocks. A sample including the blank lines, comments, and
category list of other desirable MIS statements.

33 9th Annual National Conference on Ada Technology 1991

4. A preliminary metric eviluation
b. Iffort to Reuse - the effort is done for counting the number Of Mource

required to locate, extract. and use the lines and determining quality metrics.
RSC verbatim.

A. The RAPID Center's Source Lines
a. Xffort to Product - the effort of Code (BLOC) tool In used to

required to develop a new component automatically total the comments and non-
rather than reuse one. commented line, for the software

component.
d. Yearly Maintenance

Effort - the average effort required to b. Ada, Measurement and Analysis
maintain the DEC for one year. Tool's (AdaMAT) metric aggregates, metric

elements, and data Items relate the
e.Uses captures the projected software engineering principles by

demand by the MIS domain categories hierarchy to specific capabilities of the
identified on the Domain Analysis RSC RSC. 4 The RAPID Center's reusability
Category form. criteria Is defined in the Information

Systems Engineering Command CISEC)_
Reusability Guidelines and The

2. A Virtue Evaluation Form Information Systems Engin*@;rina Command
records the RAPID's Ads. engineer (ISEC) Portability Guidelines. Theme
subjective views of the RSC'. published standards have been mapped to
characteristics. They are determined by the AdaMAT's software quality criteria
reviewing the *esign, code or any related and metrics that pertain to non-complex
documentation:f understandable attributes of source code,

attributes of high cohesiveness,
a. Known demand - the Proposed RSC understandable attributes of program

has been specifically requested by a structure, and attribi tea that detect
customer. machine dependencies.i Figure 1

represents the thresholds of percentages
b. Short lead time - the RSC can and counts allowed for the 31 metrics

be prepared and installed on the RCL with used to determine RAPID's Reusability
very little effort. Measure.

C. Wide applicability - the IANONALY..MANAGIMENT Normal Loops 5
Proposed RSC can be used in a wide Co~ntrainedSumerics
variety of applications. ConstraintedNmri C

FrograirErrer C
d. High visibility - the Proposed iS..rag...Error

I~ur*ric Error
RSC is targeted for a well-known I UserExc*;tior liaised
application.

IZNDEPENDEN~CE Nlc1~ssedClosed.
ixdClsus*

e.Compatibility - the Proposed No-Prasia-Paek
RSC satisfies customer's needs. NOMachntCod&st I..

NoeImp! Dp PraSmans

f. Low complexity - the Proposed ~m~4~tr
RSC can be easily understood and reused MODULARITY Variables-Hidden
by the customer. Pravat*_TypesAnd Part

Private TypesAndContzt

g. Drudgery avoidance - the Liml*_dlocs 0 oi.
Proposed RSC is necessary and well-known,* N-Vrzble-Declations 1Col.
but would be tedious to implement. 3LF D ZCRIPTIV Z3U Ne.Fredelxned Wrd s " 0*.

h . General appeal - the Proposed 8IMPLICITY 1xpr~zsTeDe.Ieelean 5
RSC demonstrates new technology, ArrayTypeExplicit 100%,

e xceptional performance, well-designed Subtype~lxplicit 10
tNo-Labelm 0User interfaces, etc. GoTos 0

3. High-Demand Evaluation Form - UTTZMCLARITY Ne.Detault-Mods-aremeters 10C%.
refrece cteoresesabisedbyPrivote-AceuejTypes ZO00'
refeencs ctegrie esablshe byS1nglejmp~IcxtType 100%'

Domain Analysis or the level of Modul 9-IndWi th-ame 100?'
abstraction. lQualifled..Subprosram 160%'

Figure 1

9th Annual National Conference on Ada Technology 1991 34

maintainability. Reliability 1
5. The RSC Evaluation Form (Figure determined by metrics for Anomaly

2) - contains the RSC long name, origin, Management and Simplicity. Portability
type and the RAPID Center Configuration in reflected through metrics for
Control ID. It also lilts the Independence, Modularity, and Self
dependencies for the RSC and captures the Descriptiveness. Maintainability is
preliminary evaluation metrics. The determined by the metrics of Modularity,
etimted time to prepare the RSC for Simplicity, System Clarity, and Self
testing and documentation Is recorded. Descriptiveness.
This form records the RCCB approval for a
Provosed RSC to become a Candidate RSC. TESTING

mc Iv 0A"amu

________________Once the Candidate RSC has been conformed
to RAPID Center standards, the RAPID
Center tests the component for

m %functionality. A test suite is created
for each Candidate RSC implementation
type. The test suites consists of an
interactive test driver that prompts the
user, saves test input, and generates

N-OO FAN GOMAO expected test results. The developer is
able to run the test suite in batch mode

- and differentiate the expected output
- - file and actual output file.

DOCUMENTATION

-- - -Thorough documentation consisting of time
- logs, design diagrams, provided users

-- -manuals, and developed Reusers Manuals
- _are kept on each Candidate RSC. The time

logs record the amount of hours spent by
_____._the Ada engineer to prepare or re-

1 engineer the component for reusability.
This information is used by the RCCB to
determine if it is feasible to make a

:-. .,o component, not originally designed for
reuse, reusable. AdaGEN, an automated
engineering tool, is used to reverse
engineer Ada code and create design

Figure 2 diagrams. The following AdaGEN diagram
describes the dependencies of an Ada
Package CmndLine. The arrows indicate

PRIPARATION the call patterns to other available
packages represented by the solid ovals.
The cloud r1 presents an unknown

If the RSC passes the coarse evaluation, component.1

it becomes a Candidate RSC to be
processed for preparation. RSCs shall be
consistently formatted in such a way that
the logical structure of the program is
apparent to the reader therefore
facilitating reusability. Re-
engineering conforms the component to
guidelines found in the RAPID Center
Standards for Reusable Software. When
re-engineering is completed, a final
metric analysis is done by running AdaMAT
a second time, using all 150 metrics to
determine reliability, portability, and

35 9th Annual National Conference on Ada Technology 1991

The example facet terms describes a
function that converts dates represented
by characters (i..., July 1, 1990 to

lnndLin 07/01/90). The function is a package
coded in Ada that runs under a VMS/VAX-
Ada operating system. The Conversion
uses no particular algorithm, so the
algorithm field is not used.

An RSC may be described by multiple facet
terms for the facets-- Object, Function,
Data Representation, Algorithm, Unit
Type, Language, and Environment. But, the
facets Component Type and the
Certification Level can have only one
facet term.

MAINTENANCE

Maintenance, a continuous process of
change, is the last phase of an RSC
development state. Three sources

Figure 3 contribute to the need for RSC
Users manuals serve as references for the mai:tenance: bugs, changes n the real
development of the Abstract. Each world, and enhancement requests. At the
abstract about two pages long is RAP:D Center, configuration management
available on-line from the RCL and it and quality assurance are implemented for
describes the purpose of the component. the life span of the RSC to ensure
Additionally, the Reuser's Manual which su.c:cessful reuse and lorgevity. The
fully describes the development Army Standard Engineer Change Proposal -
environment, generic parameters. S:ftware (ECP-S) is the method use to
dependencies, examples of operation for record problems (bugs) encountered or
the Candidate RSC is written or enhancements suggested by RAPID's
vendor/developer supplied. Other ztcomer interaction and solicited
documents that accompanied the component feedback. An obsclete PSC is considered
also are kept and made available through f:r the archive if it has not been reused
the RCL. and hav no outstanding problem reports.

n7s are .only deleted if an improved
d':pic.Ste FSC is found, or an RS7's

CLASSIFICATION functionality is determined as being
inherent to Ada.

The RCL's automated search and retrieval REUSABLE SOFTWARE COMPONENT
Lyztex. -s based on a faceted CERTIFICATION LEVEL
classification scheme. Facets describe
the views, aspects, or characteristics of
the component. Classification is the Originally RAPID had three levels of
last process on the Candidate RSC before certification--tested, untested and
it becomes an RSC installed in the RCL. certified. However, expanding population
RAPID currently uses nine facets to of the RCL dictated the need to refine
describe an RSC: RSCs certified as untested. There are

now five RSC Certification levels and
each level is progressive to the next.

Description Facet Nae Example FacetTerm Levels : through 5 are defined as
conceptual abstraction Object Date follows: 0

physical data structure Data Representation Character
performnce process Function Convert Level-) indicates the RSC has not
special methods Algorithm
software develop life cycle Component Type lmplementation been tested nor documented by the RAPID
methodological entity Unit Type Package Center staff. But, an abstract.
progamming language Languae a classification scheme and metric
approval level Certification Level Level 4
Sroee/operating system Enviro eent MS/VX-Ade analysis is prepared to install it on the

Table 1

9th Annual National Conference on Ada Technology 1991 36

RCL. RSC'. at this level are customer 2. Booch, Grady. Software Components
driven and would be placed In the RCL to with Ada. Canada:
meet immediate needs. BenJamin/Cummings. 1087.

A Level_2 RSC has been reviewed by 3. Dynamics Research Corporation (DRC).
the RAPID Center staff and Is expected to AdaMAT Product Information Sheet.
be reliable based on previous uses, even Massachusetts: DRC, 1987.
though testing of the RSC's functional
performance has not been performed. The 4. Dynamics Research Corporation (DRC).
popular unguaranteed COTS software such AdaMAT Reference Manual.
as Roach-Wizard components and Government Massachusetts: DRC, 1987. 3-1. 4-1,
software such as AdoSAGE apply in this 5-1, 6-1.
category.

5. EVB. Generic Reusable Ada Components
A Level_3 RSC has been reviewed and for Engineering Notes. Maryland:

tested by either the RAPID Center staff EVB Software Engineering, Inc, 1984-
or the supplying vendor/developer. The 1989.
test materials are provided with the RSC.
lowever, the vendor/developer components 6. Idaho National Laboratory (INEL).
are not required to comply with RAPID's AdaSAGE Reference Manual. Idaho: EG
stringent standards for re-engineered & G, Idaho, Inc, February 1900.
components.

7. Infotech. Life-Cycle Management
A Level.4 RSC has been reviewed and Analysis. State of the Art Report

approved by the RCCB for compliance Series 8 Number . England:
and/or deviations to RAPID standards of Infotech, 1980. 30.
format, style, documentation, and
complete test mattrials. COTS software S. SofTech. Final RAPID Center Reusable
such as EVB-GRACEI components that Software Component (RSC) Procedures.
provide test scripts and reuser's manuals Massachusetts: SofTech, June 1990.
are classified at this level. 5-9, 6-7, C-6, H-22..

A Level_5 RSC is presently defined
as having been prepared for Level 4 and
it has been cleared for security 9. SofTech. User Orientation, Reusable
purposes. Software Components Overview.

Massachusetts: SofTech, June 1990.
301.22.51.

CONCLUSION

10. SofTech. RAPID Center Standards for

RAPI:'s program will increase user Reusable Software. Massachusetts:
confidence by its services of catching Softech, October 1990. 3-6
the b%.gs, beng aware of changes in the
Department of Defense (DOD)/Industry Ada 11. Standard Automated Remote to Autodin
c€mzunity, and providing configuration Host (SARAH) Branch. Reuse of Ada
management of enhancements on all RSCs. Software Modules. Oklahoma: Command
Thecretically, these certified error free and Control Systems Office, June
PSTs will last forever. In addition, the .88.
certification and preparation procedures
and guidelines are continually being 12. Vitaletti, William and Ernesto
ev&:Lated, refined and updated as the RCL Guerrieri, Ph.D. Domain Analysis
::Lu.es to grow. Within the ISEC RAPID Center.

Proceedings of the Eighth Annual
National Conference on Ada

trE'RTICES Technology: 1990.

13. Mark V Systems Limited. AdaGen
1. Ezcch, Grady. Software Engineering -Ters Manual. California: Mark V

WTt!. A1a. Canada: Systems Limited, 1990.
Be-jamin/Cummings, 1983. 356 - 359.

37 9th Annual National Conference on Ada Technology 1991

UO1UT TH! AUTHORS

Joanne Piper is the Program Manger for
the RAPID project at the Software
Development Center Washington. She is
responsible for the development and
promotion of the RAPID program within the
DOD/ Industry Ada community. M. Piper
received hebr Bachelor of Seience degree
from the University of Maryland and is a
member of SlgAda and the National
Association of Female Executives (NAFl).
She currently chairs the Ada Joint
Programming Office (AJPO) Reuse
Initiative on management and DOD policy
issues.

Wanda L. Barner is a Staff Sergeant in
the United States Army assigned to the
RAPID project at Software Development
Center Washington. She in actively
involved in the identification,
procurement and certification of RSCs.
She has specialized in application
development through her eight years of
computer experience. SSG Barner chairs
the RAPID Configuration Control Board.

Both authors can be reached at:
USAISSDCW, ASQBI-IWS-R, STOP H-4, Fort
Belvoir. Virginia 22060-5456.

9th Annual National Conference on Ada Technology 1991 38

SOFTWARE REUSE PROGRESS

James W. Hooper Rowena 0. Chester
Computer Science Department Martin Marietta Energy Systems, Inc.

The University of Alabama in Huntsville P.O. Box 2003
Huntsville, Alabama 35899 Oak Ridge, Tennessee 37831

ABSTRACT of broadly-applIcable software components
such as mathematical and statistical

In this paper we discuss and assess routines, sorting routines, and the like).
recent progr-ss in software reuse, as After the viability of "vertical" (i.e.,
gauged by several indicators. The appllcation-specific) reuse was demon-
indicators fall into the categories of strated in several projects, issues
actual practice, research, and information affecting large-scale reuse have been
dissemination. identified, and progress made in resolving

them.
In the category of practice, we

consider reported results of reuse Availability of the Ada language has
projects, including the extent of spurred interest in reuse, and Ada serves
productivity Improvements. We seek to as the Implementation language in many
Identify common characteristics of reuse projects. Growing emphasis on
successful reuse projects; both technical consistency of the software process has
and managerial aspects are considered. We provided settings in which reuse can be
also assess the current extent of reuse effectively undertaken.
practice, and seek to determine what
applications are represented. In the following sections we discuss,

in turn, some achievements in practicing
In the category of research, we reuse, in conducting research into

review Initiatives, approaches, and remaining reuse issues, and informing
results. We seek to identify significant management and technical personnel about
progress, and to indicate areas where concepts and methods for software reuse.
further research is needed. We have not attempted by any means to

provide exhaustive coverage of current
In the category of information reuse status, but rather to discuss enough

dissemination, we summarize such specific examples to convey a feel for
indicators as workshops, conferences and status.
short courses Involving reuse, determine
the nature of overview, tutorial, and
guidelines material available, and REUSE PRACTICE
summarize the status of journal articles
on reuse. Redundancy of software functionality

has been recognized for some time. Jones
In all categories, we attempt to (1984) estimated that of all code written

identify developing trends. By providing in 1983, probably less than 15 percent was
this analysis of reuse progress, we hope unique, novel, and specific to individual
to identify proven approaches for wider applications. However, only about 5
use. Much of the necessary material for percent of code is actually reused,
this paper was drawn from the forthcoming according to DeMarco (quoted in Frakes and
book by these same authors, entitled Nejmeh 1987). Recognition of this
SOFTWARE REUSE GUIDELINES AND METHODS, to disparity has spurred numerous companies
be published by Plenum Press. and agencies to try to obtain benefit from

previously developed software. It is
recognized as being very important to try

INTRODUCTION to obtain benefit from products resulting
from all life-cycle phases, with the

Very significant progress has been expectation that products from earlier
made In the evolving field of software phases should provide greater payoff if
reuse. The first major hurdle overcome they can be effectively reused. While
was the skepticism that reuse was feasible more is known at this time about reusing
beyond "horizontal" reuse (meaning reuse code than is true of other products,

39 9th Annual National Conference on Ada Technology 1991

progress has been made in reusing products approach at ITT Hartford Insurance, good
across the entire life cycle, results were obtained largely because "the

Hartford management supported,
As we discuss different projects, it capitalized, and actively moved to assure

will become evident that the earlier reuse the success of the project." Biggerstaff
efforts were based primarily on ad hoc and Perlis also reprint and comment on
approaches. and that as greater papers by Oskareson (2989) and Matsumoto
understanding has been gained and research (1989), who report reuse successes in

has begun to pay off, more systematic telephony software and process control
approaches are evolving. We now summarize software, respectively. They note that
a few experiences In reuse, reuse skeptics doubted the possibilities

of reuse in these domains, since the
Selby (1989) studied software reuse domains impose unusually strict memory

activities at NASA Goddard Space Flight requirements and performance constraints.

Center (GSFC). He considered 25 moderate Matsumoto, of Toshiba, states that on

and large-size software systems (from average about one-half of the lines of
3,000 to 112,000 lines of FORTRAN source code of their generated software products

code) that are support software for are reused code. Biggerstaff and Perlis

unmanned spacecraft control. The amount cite these experiences as reflecting "what

of software either reused or modified from can be accomplished with enlightened and

previous systems averaged 32 percent per committed management coupled with existing

project. Selby characterizes reuse as a technology."
natural process in the GSFC environment--
it is by developer choice rather than Prieto-Diaz (1990) discusses the

management directive, thus the developers approaches taken in the successful reuse
must be convinced of the payoff. There Is project at GTE Data Services--called the
relatively low turnover of development Asset Management Program (AMP). The goal
personnel in this setting, and although Is to create, maintain, and make available
there is variation in project at the corporate level, a collection of
functionality, the overall domain for all reusable assets. They define reusable

the projects is ground support software asset as any facility that can be reused
for unmanned spacecraft control, for which in the process of producing software;
there Is an established set of algorithms initial emphasis was on reusable software
and processing methods. Thus reuse is components. Based on the use of PrIeto-
facilitated by experienced personnel Diaz's Faceted Classification approach for
working in a stable, mature application organizing a library of reusable
domain. Subsequent efforts at GSFC with components, the project was considered to
Ada code indicate reuse averages even be very successful during its first year.
higher than the 32 percent level Although only 38% of the assets in the
experienced with FORTRAN code. library were actively reused during the

first year, a reuse factor of 14% was
Lanergan and Grasso (1984) emphasize achleved--calculated by dividing the lines

the importance of management commitment in of code reused by the total lines of code
Raytheon's successful reuse project. The produced by the organization. An
Information Processing Systems estimated $1.5 million overall savings was
Organization of Raytheon's Missile Systems realized. They were experiencing 20%
Division concluded that about 60 percent reuse during the second year, and are
of their business application designs and predicting 50% reuse by the end of the
code were redundant. By standardizing fifth year, with a savings of over $10
those functions In the form of reusable million.
functional modules and logic structures,
they are experiencing about a 50 percent Reifer (1990) reports on the planning
gain in productivity. Also, they report for a reuse program under the purview of
marked Improvement in the maintenance the Department of Defense (DoD) Joint
process due to a consistent style for all Integrated Avionics Plan for New Aircraft.
software, which permits the reassignment The Joint Integrated Avionics Working
of personnel from maintenance to Group (JIAWG) has made plans to address
development of new systems. management, technical, and operational

issues In the reuse program. Among issues
Siggerstaff and Perlis (1989b) addressed Is a plan to incorporate

reprint the Lanergan and Grasso paper as specific reuse activities into each phase
well as papers by Prywes and Lock (1989) of DoD's software development process (as
and Cavaliere (1989) on reuse In business required by DOD-STD-2167A).
applications. Prywes and Lock used a
program generator approach, with results The DoD Strategic Defense Initiative
of a threefold gain In programmer Organization (SDIO), through its Software
productivity. Biggerstaff and Perlis note Reuse Committee, Is also planning
that, while Cavallere reports on an ad hoc activities expected to lead to large-scale

9th Annual National Conference on Ado Technology 1991 40

reuse within the Army and Air Force ISEC is sponsoring the Reusable Ada
components, and their contractors. Packages for Information System

Development (RAPID) Center project, with
Even the few examples given above support from SofTech; this project

Indicate a wide range of application emphasizes the identification and
areas, organizations, and approaches. retrieval of reusable Ada software
There is also a very noticeable components (Vogelsong 1989). A RAPID
acceleration of new starts in reuse, and pilot project Is presently underway, with
they are becoming more ambitious as to the long-range goal being to expand usage
organizational scope, life-cycle range of to all of ISEC, and other agencies as need
products, and up-front investment. We and funding allow. ISEC also funded
state some summary observations in the preparation of reuse guidelines by SofTech
Conclusions section. (ISEC 1985).

The Software Productivity Consortium
REUSE RESEARCH (SPC) in Reston, Virginia, conducts reuse

research, Including studies involving cost
A great deal of productive reuse- modeling for reuse assessment,

related research has been conducted, in relationships of prototyping to reuse,
the U.S. and abroad (especially in Europe domain analysis, and other issues (Pyster
and Japan). An Influential early research and Barnes 1987). The Microelectronics
project was the Common Ada Missile and Computer Technology Corporation (MCC)
Packages (CAMP) project (McNicholl et al. in Austin, Texas, is conducting research
1986), conducted by McDonnell Douglas in many facets of reuse, including the
under contract to the U.S. Department of application of reverse engineering methods
Defense (DoD) Software Technology for and hypermedia to reuse, and reuse of
Adaptable, Reliable Systems (STARS) software components across the life cycle
program. This was an early example of the (Biggerstaff 1989). Numerous companies
viability of conducting vertical reuse, are active in reuse research and
and also demonstrated the strength of Ada experimentation; in addition to those
features for preparing reusable code already mentioned, some others are
components. STARS has also funded the Computer Sciences Corporation, Computer
development of a reusability guidebook Technology Associates, CONTEL Technology
(Wald 1986) and experimental reusable Center, Draper Labs, GTE, Institute for
components, and now is undertaking a major Defense Analyses, Intermetrics, Rational,
reuse project with support from Boeing, SAIC, and Westinghouse.
IBM, and Unisys. Significant research projects are

The federally funded Software underway in the United Kingdom, as
Engineering Institute (SEI) at Carnegie- evidenced by the special section on
Mellon Unlvers~t7 In Pittsburgh has software reuse in the September 1988 issue
conducted several reuse research and of the Software Engineering Journal (Hall
experimentation projects, including use of 1988); this issue contains some excellent
the CAMP reusable parts, and is now papers. Gautier and Wallis (1990)
conducting the Domain Analysis Project. document work conducted by the Reuse
Their goals are to develop domain analysis Working Group of Ada-Europe. The European
products that support implementation of Software Factory is a multination project
new applications (including understanding to advance reuse knowledge/practice in
a domain, supporting user-developer Europe. The software factory approach is
communication, and providing reuse also receiving research emphasis in Japan
requirements), and to establish domain (e.g., see Fujino 1987).
analysis methods to produce these
products. Hooper and Chester (1990b) In addition to research projects, per
discuss this project in detail. se, much has also been learned about what

is effective (and in some cases, what is
U.S. Army Institute for Research in not effective) in conducting actual reuse

Management Information, Communications, projects, as discussed in the section
and Computer Sciences (AIRMICS), and its above. Assessment of research results is
parent organization, U.S. Army Information also occurring in actual reuse projects,
Systems Engineering Command (ISEC), have and needs for additional research are
both been active in reuse research. being identified. So far research has
AIRMICS conducted the Ada Reuse and been conducted, and results applied, in
Metrics Project, with management by Martin such diverse aspects of reuse as domain
Marietta Energy Systems, and funding from analysis, preparing reusable components,
STARS. Hooper and Chester (1990a) library mechanisms for categorizing
summarize the results of the project, components, storing and maintaining them,
which included participation of retrieving and understanding them,
researchers at a number of universities, modifying them, and binding them together

41 9th Annual National Conference on Ado Technology 1991

Into workable software. Also, research and Perlis 1989a and 1989b. A forthcoming
has been (and is being) conducted in cost book by Nooper and Chester (1990b)
modeling for reuse, management and overviews the field, and offers guidelines
organizational approaches to foster reuse, for both managerial and technical aspects
and legal and contractual strategies for of reuse--including suggestions for
reuse. Human behavioral and cognitive getting started in software reuse.
aspects of reuse are also being studied. Several earlier guidelines documents are
The software engineering process is being available (e.g., IePC 1985, Wald 1986).
studied, since reuse must be an integral Also, several new software engineering
part of software development and textbooks Include material on software
maintenance if It is to be successful. reuse.
Benefits of object-oriented methods are
being assessed for reuse support. Various
issues related to tool/environment support CONCLUSIONS
for reuse are being addressed, including
knowledge-based approaches. In all the categories of practice,

research, and Information, indications are
Thus, little-by-little, research is that significant progress has been made In

paying off in these different facets of software reuse. Research has led to
software reuse. In the meantime, greater understanding and better practice,
successful reuse is occurring based on and success in practice has led to greater
methods already known to be effective. As confidence in the viability of reuse, and
new and better methods are devised, to less reluctance to fund reuse projects.
even greater productivity will no doubt The indications are that in all three
result from reuse, and reuse will be areas, the level of productive activity is
undertaken In areas in which It is not now steadily increasing.
occurring. We make some further comments
about the need for additional research, In A number of specific observations are
the Conclusions section. offered here.

* The greatest growth in reuse is
INFORMATION DISSEMINATION occurring in application - specific

projects.
As Is true in the categories of * Reuse of products other than code

research and practice, acceleration of is progressing rapidly.
activities is being experienced in the * Reuse projects are becoming more
dissemination of information about reuse. ambitious as to organizational scope and
And, as the earlier comments in this paper up-front funding.
would suggest, the infor:ation being * Reuse approaches are becoming more
supplied is of a higher quality than was systematic/formal, less ad hoc.
previously the case, and indicates * Successful reuse projects all have
Increasing understanding of reuse and strong management committment.
greater maturity of processes. Also, a * Successful reuse projects occur in
growing confidence is being expressed in stable, mature application domains with
the viability and economic feasibility of personnel experienced in the domain.
reuse in carefully selected application * Successful reuse projects are
areas. characterized by consistent development

and maintenance processes.
Some excellent papers on reuse have * Successes are occurring in a wide

appeared in refereed technical journals, range of application areas--business,
The September 1984 issue of IEEE scientific and engineering, both with and
TRANSACTIONS ON SOFTWARE ENGINEERING is a without difficult time and memory
seminal reference source for early work. constraints.
The July 1987 special issue of IEEE * Effective research has been
SOFTWARE, "Making Reuse a Reality", is responsible for greater success in reuse.
another important source. Individual * Research continues on various
papers on both reuse experiences and reuse fronts--and is needed to further improve
research are now appearing frequently in various aspects of reuse.
refereed journals. * Information sharing concerning

reuse is increasingly effective.
Most of the conferences on software

engineering and on Ada have a reuse track, An important area of current research
with numerous papers being presented. is cost modeling to predict comparative
Tutorials on reuse are being offered at costs to reuse, redevelop, and purchase,
many conferences, and short courses are as well as predicting costs to make
appearing as well. components reusable. A related need Is

for organizations to build up data on
Three tutorials are available: their own costs to develop reusable

Freeman 1987, Tracz 1988, and Biggerstaff software, to develop software without

9th Annual National Conference on Ada Technology 1991 42

reusability emphasis, to reuse software, Hooper, J.W. and R.O. Chester. 1990a.
and to modify software. SOFTWARE REUSE GUIDELINES. U.S. Army

AIRMICS ASQB-GI-90-015.
Legal and contractual issues need

further study and resolution--relative to Hooper, J.W. and R.O. Chester. 1990b.
data rights and potential liability. The SOFTWARE REUSE GUIDELINES AND METHODS
relationships of the U.S. government to (DRAFT) (Sept.). (Accepted for publication
its contractor presents especially by Plenum Press.)
difficult issues. Further study and
experimentation is needed concerning the ISEC 1985. ISEC REUSABILITY GUIDELINES,
integration of reuse into the overall 3285-4-247/2. SofTech (for U.S. Army
software process. Additionally, better Information Systems Engineering Command;
domain analysis methods and tools are Dec.).
needed, as are more effective means to
match software needs to available reusable Jones, T.C. 1984. Reusability in
software--involving a great range of Programming: A Survey of the State of the
technical disciplines. Art. IEEE TRANS. ON SOFTW. ENG., vol.

SE10, no. 5 (Sept.), pp. 488-494.
The progress so far in software reuse

is very encouraging, offering motivation Lanergan, R.G. and C.A. Grasso. 1984.
for further expansion of both practice and Software Engineering with Reusable Design
research. Many interesting and and Code. In IEEE TRANS. ON SOFTW. ENG.,
challenging opportunities are before us. vol. SEl0, no. 5 (Sept.), pp. 498-501.

Matsumoto, Y. 1989. Some Experiences

REFERENCES in Promoting Reusable Software:
Presentation In Higher Abstract Levels. In

Biggerstaff, T. 2989. Design Recovery for Biggerstaff and Perlis 1989b.
Maintenance and Reuse. COMPUTER, vol. 22,
no. 7 (July), p. 36-49. McNicholl, D.G., C. Palmer, et al.

1986. COMMON ADA MISSILE PACKAGES (CAMP).
Biggerstaff, T.J. and A.J. Perlis Vol. I: Overview and Commonality Study
(eds.). 1989a. SOFTWARE REUSABILITY. VOL. Results. AFATL-TR-85-93. McDonnell
I, CONCEPTS AND MODELS. ACM Press Douglas, St. Louis, MO.
(Addison-Wesley, Reading, Mass.). Oskarsson, 0. 1989. Reusability of

Biggerstaff, T.J. and A.J. Perlis Modules with Strictly Local Data and
(eds.). 1989b. SOFTWARE REUSABILITY. Devices--A Case Study. In Biggerstaff and
VOL. II, APPLICATIONS AND EXPERIENCE. ACM Perlis 1989b.

Press (Addison-Wesley, Reading, Mass.). Prieto-Diaz, R. 1990. Implementing Faceted

Cavaliere, M.J. 1989. Reusable Code at Classification for Software Reuse. In
the Hartford Insurance Group. In PROCEEDINGS OF THE 12TH INTERNATIONAL
Biggerstaff and Perlis 1989b. CONFERENCE ON SOFTW. ENG., Nice, France

(Mar.)
Frakes, W.B. and B.A. Nejmeh. 1987.
Software Reuse Through Information Prywes, N.S. and E.D. Lock. 1989. Use
Retrieval. In PROCEEDINGS OF THE 20TH of the Model Equational Language and
HAWAII INTERNATIONAL CONFERENCE ON SYSTEM Program Generator By Management
SCIENCES, Kailua-Kona, Hawaii, pp. 530-535. Professionals. In Biggerstaff and Perlis

1989b.
Freeman, P. 1987. TUTORIAL: SOFTWARE
REUSABILITY. The IEEE Computer Society. Pyster, A. and B. Barnes. 1987. THE

SOFTWARE PRODUCTIVITY CONSORTIUM REUSE
Fujino, K. 1987. Software Factory PROGRAM. SPC-TN-87-06, SPC, Reston, VA.
Engineering: Today and Future. In (Dec.).
PROCEEDINGS OF THE 1987 FALL JOINT
COMPUTER CONFERENCE, Dallas, pp. 262-270. Relfer, D.J. 1990. JOINT INTEGRATED

AVIONICS WORKING GROUP REUSABLE SOFTWARE
Gautier, R.J. and P.J.L. Wallis. 1990. PROGRAM OPERATIONAL CONCEPT DOCUMENT (OCD)
SOFTWARE REUSE WITH ADA. Peter Peregrinus (DRAFT). RCI-TR-075B, Reifer Consultants,
Ltd. (London, U.K.). Inc., Torrance, CA. (June)

Hall, P.A.V. (guest ed.) 1988. Software Selby, R.W. 1989. Quantitative Studies of
Components and Re-use: special section Software REuse. In Biggerstaff and Perlis
of SOFTWARE ENGINEERING JOURNAL, vol. 1989b, 213-233.
3, no. 5 (Sept.).

43 9th Annual National Conference on Ado Technology 1991

Tracz, W. 1988. TUTORIAL: SOFTWARE BIOGRAPHIES
REUSE: EMERGING TECHNOLOGY. The IEEE
Computer Society. JAMES W. HOOPER is Professor of Computer

Science at the University of Alabama inVogelsong, T. 1989. Reusable Ada Packages Huntsville (UAH), where he teaches and
for Information System Development conducts research in programming languages
(RAPID)--An Operational Center of and software engineering. He holds B.S.
Excellence for Software Reuse. In and M.S. degrees in mathematics, and M.S.
PROCEEDINGS OF THE REUSE IN PRACTICE and Ph.D. degrees in computer science.
WORKSHOP, Pittsburgh (July). Prior to joining UAH in 1980, he wa3

Wald, B. 1986. STARS REUSABILITY GUDEBOOK. employed by NASA Marshall Space FlightV4.0. DoD STARS. Center, where he conducted research in
simulation approaches for NASA missions.

ROWENA 0. CHESTER manages research
projects in the Data Systems Research and
Development Program of Martin Marietta
Energy Systems, Oak Ridge, Tennessee.
Recent research activities include
operating system and application software
certification, database security, PC
vulnerability assessments, portability,
and Ada software reuse. She holds the
B.Eng. Physics degree, and the Ph.D. in
physics and electrical engineering.

9th Annual National Conference on Ada Technology 1991 44

An Integrated Approach to Software Effort and Schedule Estimates

Basil Papancolaou

Lockheed Sanders, Nashua, NH

Abstract estimates. A bottom-up summation to the subsystem
Software development effort estimates and planning and system level follows.
for large and complex programs Is a challenge. Several
models are used to support this task, however they Software sizers are also available and they may be
are not flexible to accommodate Individual project used if software size knowledge data base is not
needs and their results draw little confidence. This available.
paper presents a comprehensive Integrated approach
that provides consistent and accurate estimates.by 3. Software Develooment Approach
comparing first the characteristics of commonly used
software parametric models, namely Ada COCOMO, The decision on the software development approach
REVIC, and PRICE S. The approach addresses is based on project requirements: Product complexity,
current software development processes, such as the reliability, risk, cost, experience base, resource
use of the Ada programming language, Incremental availability, customer schedule, etc. The objective Is
development, and software engineering the development of quality software, that meets the
environments. A simple methodology has been customer requirements, within budget and schedule.
established, where the same parameters feed
different models, if required, and yield comparable An initial set of all the tentative software development
results. This facilitates analyses and minimizes the environment, covering programmatic, developmental
need for result reconciliation, while it increases resource, and system aspects, is defined.confidence.te spct, sdeind
confidence. Subsequently software parametric tools will be used

.for trade-off analyses.

4. Effort and Schedule Estimates
Presently many software developers encounter
planning for Ada projects for the first time. While they The results of sizing and Initial environmental
are lacking their own cost experience for such projects parameter assessment are used as input to software
they can rely on software parametric models that effort and schedule estimates, which are performed
support Ada development. Since models differ, their through parametric models and engineering analysis.
features and outputs must be well understood and
compared to engineering estimates as they are used. 4.1 Software Parametric Model selection

This work represents recent experience in planning alarge Ada project. It outlines an overall process where One or more parametric models may be selected for
software parametric models are utilized, effort estimate, by customer or company requirement,or for more confidence. Most common models
Section 2 outlines software size estimation. Section 3 specifically developed or tailored for Ada development
discusses factors to be considered for selection of are:
software development approach. Section 4 presents
effort and schedule estimation, including discussion Ada COCOMO 1], based on COCOMO [2], which
of parametric models. And finally section 5 addresses has been modified with the addition of Ada Scaling
software development plan provisions for staying equation and calibrated with completed Adawithin the initial estimates. programs. It is meant for programs following the Ada

Process Model [3], however it can be applied to
2. Software Size Estimate disciplined DOD-STD-2167A/ MIL-STD-1803

programs with very good approximation.

The process starts by estimating the size of software in REVIC [4], based on the original COCOMO and
lines of code (LOC). It is usually done starting by top sponsored by the Air Force, and
down functional or object oriented decomposition and
estimate of the size of lower level components by • PRICE S [5], which is part of the GE PRICE family of
comparison to known projects or by engineering tools.

45 9th Annual National Conference on Ada Technology 1991

composit Implementation predictors [6], that Is Intuitive
4.2 Parametric Model Features engineering estimates for each software activity at the

system and subsystem level, based on productivity
All three referenced models are supporting both achieved In similar programs within the same or similar
software development and life-cycle. All three have environment. This process considers schedule
been validated with respect to different sets of constraints, resource availability, learning curves, and
projects. Table 1 is a comparative chart of their risk reduction, and leads to the generation of activity
features. networks showing activity dependencies In a time

scale.
4.3 Inputs and Outputs The models, on the other hand, are calibrated with
Table 2 shows the required Input parameters for each data from the developers cost history data base, if
model, besides size and schedule, as related available, or checked and normalized against
between models. if more than one models are used, engineering estimates. Ada COCOMO and REVIC are
this table Is used to assign compatible values to the calibrated by adjusting the equation constants.
models Figures 1 and 2 represent the results of PRICE S Is calibrated by deriving a parameter
uncalibrated models for the same activities of a typical representing developers productivity (PROFAC).
100,000 LOC Ada project. Notice the 2:1 effort Calbration reduces result discrepancy between
discrepancy between PRICE S and Ada COCOMO. models.
Effort and schedule distribution are shown in Table 3.
Ada COCOMO and REVIC allocate more time for the If risk considerations or customer requirements call for
early phases, typical characteristic of Ada software Incremental development each increment is modelled
development, separately. Parameters may vary between Increments.

4.4 Effort and Schedule estimate The models are then used at the subsystem level.
Results are fed into the generated activity networks for

Parallel with the models, which provide an Initial critical path analysis. At this point their tradeoff analysis
prediction, the development effort is estimated using capability is very valuable.

Table 1.
Parametric Software Model Features

FEATURE Ada REVIC PRICE S
COCOMO

Ada Development Mode Yes Yes Yes
Incremental Development Modellint. Yes Indirect Indirect
Systern/Software Requirements No Yes Yes
System Integration Support No Yes Yes
Detailed Financial Factors No No Yes
Operator Friendliness N/A Very Good Good

Model Down-
Access Equations loadable Via modem

I PC program
Support User's User's 800-

Group Group Number
License,

Cost Free Free Connect,
Storage

I_ I_ _fees

9th Annual National Conference on Ada Technology 1991 46

Table 2.
Software Model Environmental Parameters

REVIC Ads COCOMOPRC S
Analyst Capablity Analyst Capability Complexityl -Personnel
Programmer Capability Programmer Capability Complexityl -Personnel
Acolications Experience Applications Experience Complexityl -Product Familiarity
Virtual Machine Experience Virtual Machine Exp Complexi I -Product Familiarity
Programming Lana Experience Programming Lana Experience Complexityl -New Language
Execution Time Constraint Execution Time Constraint Utilization
Main Storage Constraint Main Storage Constraint U tilization
Virtual Machine Volatility Virtual Machine Volatility (Host, Target) Complexity 2-HW day at the same time,
Computer Turnaround Time Computer Turnaround Time (PROFAC)
Requirements Volatility Requirements Volatility ________________

Product Reliability Required Software Reliability Platform
Product Complexity Product Complexity Application

Data Base Size Data Base Size _______________

Required Reuse Required Reuse ________________

Modern Programming Practices Modern Programming Practices (PROFAC)
Use of Software Tools Use of Software Tools Complexityl -Software Tools
Required Security Required Security_________________
Management Reserve for Risk ________________________________

Required Schedule________________________________

SW DvelomentModeComplexity with Respect to
___________________Personnel CapabilitI

Ads Scaling Equation[Experience with Ada Process Model
Design Thoroughness at PDR
Risks eliminated by PDR
Requirements Volatility

MM 2000.17

E 1500. 1227
IF 1029

R
T 500

Ada COCOMO REVIC PRICE S

Figure 1. 100 KLOC Software Development Effort Estimate by Uncalibrated Models

47 9th Annual National Conference on Ada Technology 1991

O s0 43 41

C 40, 32
H 30..
E
D 20

L
E 10

0
Ada COCOMO REVIC PRICE 8

Figure 2. 100 KLOC Software Development Schedule Estimate by Uncalibrated Models

Table 3.
Parametric Model Effort and Schedule Distribution per Software Activity

EFFORT (%) SCHEDULE %)
ACTIVITY PD DD CUT SW PD DD CUT SW_

I&T I&T
MODELIAda COCOMO, REVIC 23 29 22 26 39 25 15 21

PRICES 18 28 25 30 20 23 33 21

Risk assessment and risk mitigation must also be part
of the planning activity. AFSC/AFLCP 800-45 [71 is an
excellent guide. Risk reduction activities become part
of the software activity network. References

Finally In the plan and cost considerations all project
unique activities, such as special support, training, [1] Barry Boehm and Walker Royce, "Ada
on-site support, etc, must be included. These tasks COCOMO: TRW lOG Version", Proceedings,
are not part of the effort covered by the models. Third COCOMO User's Group Meeting,

Pittsburg, PA, November 1987.
3. Software Development Plan

[2] B.W. Boehm, Software Engineering
The effort and schedule estimates made in the Economics, Prentice-Hall, 1981.
planning phase assume that certain conditions will
exist during development. The adherence to these [3) Walker Royce, "TRW's Ada Process Model for
conditions Is measured through software Incremental Development of Large Software
management indIcators.which should be defined and Systems", Proceedings, 12th International
Incorporated into the software development plans. An Conference on Software Engineering, Nice,
excellent set of management indicators Is provided In France, March 1990.
AFSC/AFLCP 800-45 [8].

9th Annual National Conference on Ada Technology 1991 48

141 REVIC Users Manual

151 PRICE S Reference Manual, General Electric
Company, 1989

[61 Tom DeMarco, Controlling Software Projects,
Yourdon Press, 1982

[71 Acquistion Management Software Risk
Abatement, AFSC/AFLCP 800-45, Air Force
Systems Command and Air Force Logistics
Command.

[81 Software Management Indicators, AFSCP
800-43, Air Force Systems Command.

BIOGRAPHY

Basil Papanicolaou is a software engineer at Lockheed
Sanders. During his eight years at Sanders he has
been part of software design and management teams.
Prior to Sanders he worked at RCA, Burlington, and
Dialog Systems, Belmont, Massachussetts.

Mr. Papanicolaou holds a BS in Physics from the
University of Athens, and a MS in Physics from
Thomas Jefferson University.

49 9th Annual National Conference on Ado Technology 1991

MANAGING THE Ada CONVERSION AND INTEGRATION

OF MISSION CRITICAL DEFENSE SYSTEMS

Thomas S. Archer

TELOS Systems Group
Sierra Vista, Arizona

ABSTRACT Mission Critical Defense System. Some of these elements are
the size of the effort, the type of development or enhancement,

This paper discusses the importance of Project Management's and current and projected organizational responsibilities. The
role in effectively coordinating and integrating the goals and Ada language supports all of the standard organizational
approaches of the user, customer, and support contractor structures, i.e., functional, product, or matrix, that may be
during the development or enhancement of Mission Critical used for the project.
Defense SysteSiz lemn: The size of the effort required to develop

or enhance a Mission Critical Defense System can influence
INTRODUCTION the organizational structure chosen and used during the effort.

During a small effort (up to 5,000 lines of code), an existing
The degree of success obtained in the development or group of an established organization can assume and conduct
enhancement of Mission Critical Defense Systems software management of the effort. A large effort (over 30,000 lines of
has always been impacted by one constant management factor. code), may require establishing new organizations to manage
That factor has been and is the measurable degree of Project the development or enhancement of the Mission Critical
Management's success obtained in coordinating and Defense System. The small effort can be supported by a
integrating the goals and approaches of the Government user, product organizational structure or as an element of a matrix
the Government customer/Project Manager, and the organization. However, a large effort normally has to be
Development/ Support contractor. The Department of Defense supported by a functional organizational structure, a matrix
selection and mandating of Ada as the language to be used for organizational structure, or a tailored combination of both the
developing Mission Critical Defense Systems software and its functional and matrix organizational structures. The rigidity of
subsequent use have increased the degree of success obtained the Ada language and the inherent structured architecture
in integrating the management goals and approaches. This support all sizes of development or enhancement efforts.
increase has been proportional to the degree of incorporation
of Ada's inherent rigidity and structured architecture into the Type lemnt: The type of effort development or
project and its management approach. This paper in the next enhancement of a Mission Critical Defense System can also
four sections will address: the selection and integration of influence the organizational structure. The development type
management goals and approaches by the user, customer, and can be addressed by any of the organizational structures. The
contractor, the Ada structural concepts being used and the enhancement type normally occurs in a previously established
support being provided management during development and organization using a functional organization or a combination
enhancement of those systems; the management approaches matrix/functional organization.
being used to integrate Ada structures and constructs into the
development of new or enhancement of existing systems; and Resonsibilities Element: The current organizational
the current approaches to incorporating of Ada into new or responsibilities normally refers to an established functional
existing Mission Critical Defense Systems, their purposes, and organization or a combination matrix/functional organization.
resulting benefits. These are Life Cycle Engineering Centers or Mission Specific

Organizations such as Fire Direction, Intelligence, Command
MANAGEMENT SELECTION and Control, etc.. Projected Mission Critical Defense System

AND INTEGRATION responsibilities deal with the proposed transition of a
development system to a deployed system, which is to be

The development or enhancement of a Mission Critical enhanced and maintained, and expected to be supported by the
Defense System is a project composed of a series of tasks that organization types.
move the effort through system life cycle phases to delivery of
the product. For the project to be successful, all participants Organizational Structure Integration.
must ensure that the direction, progress, time, and resources
are managed efficiently and effectively throughout the effort. Once the structure has been chosen for the development or
The first item to be selected is the Project Management enhancement of the Mission Critical Defense System, the
organizational structure. user's, customer's and contractor's organizational structures

must be inti.grated to support the development and delivery of
Organizational Structure Selection. the product. Integration is normally accomplished by creating

parallel organizations at the user, customer, and contractor
There are several elements that effect the selection of an levels, by identifying and establishing formal lines of
organizational structure for development or enhancement of a communication, and by developing coordination

responsibilities.

9th Annual National Conference on Ada Technology 1991 50

Creating Parallel Organizations: The project and run-time checks catch software problems other languages
manager/customer organization is the organization that is would not detect until or during integration testing. The Ada
normally paralleled by the contractor's organization. This concepts to be used in developing or enhancing a Mission
paralleling leads to establishing technical points of contact at all Critical Defense System should be identified to show how they
three organizations which improve and speed the flow of are used in supporting Project Management elements to
technical information and the resolution of technical problems. successfully complete the project.
The Project Manager's organization normally parallels the
user's organization to improve and speed up the flow of Ada Concents to be Apnlied.
requirements and development status information. The better
the three organizations can parallel their structure, the more The Ada concepts to be applied to the development and
successful the integration and the coordinated effort to develop enhancements of Mission Critical Defense Systems can be
or enhance the Mission Critical Defense System. specific to a life cycle phase, such as test and evaluation, or

inclusive through multiple life cycle phases. The first Ada
Establishing Lines of Communication: The required concepts to be addressed will be those that are limited to one or

lines of management communication are identified and tailored two life cycle phases.
to fit the organizati-'al structure selected for developing or
enhancing the Mission Uitical Defense System. Normally, Life Cycle Phase Specific Ada Concerts: The design
direction flows down whereas information flows laterally and phase of the Mission Critical Defense Systems project life
upward. The formal lines of communication are enhanced by cycle exhibits most of the phase specific Ada concepts being
the establishment of technical points of contact who are applied. Ada directly supports the use of metrics to monitor
responsible for ensuring the flow of information and direction and evaluate computer resource utilization, software
to the proper levels of the project. The complexity of the lines development and design personnel resources, the stability of
of formal communication is in direct relationship to the requirements definition, and software design and development
complexity of the organizational structure used for developing progress. These metrics evaluate such things as staffing, cost
or enhancing the Mission Critical Defense System. to date, machine utilization, module sizing, detecting faults,

and status of software design and testing. Ada has an inherent
Developing Coordination Responsibilities: Coord- capability for modeling which is used extensively in design.

ination is a key element in the success of all projects requiring Ada's information hiding, data abstraction, packaging,
more than one organization to be responsible for completion of modularity, and localization contribute to a more efficient and
the tasks during development or enhancement of a Mission integrated system design. Software reusability is being
Critical Defense System. Coordinating the efforts of the user, incorporated into the design because of Ada's inherent support
the customer and the contractor during development or of the reusability concept. Development and testing phases are
enhancement projects requires the development and supported and improved by the use of Ada concepts in the
implementation of a project plan. The project plan should design phase. Ada supports the use of automated
define the work to be done and describe the plan for Configuration Management tools for effective software and
accomplishing that work. The management project plan document change control and successful project task
should: completion.

" Define the scope and use of the plan Life Cycle Phase Inclusive Ada Concepts: Probably
• Identify controlling documents the most comprehensive Ada life cycle phase inclusive concept
" Provide project overviews, assumptions, is that Ada was designed or implemented with explicit support

deliverables, and schedules for software engineering built into the language. This support,
" Provide detailed task descriptions, schedules, in the form of rigidity and structured architecture that

and budgets emphasizes modularity and localization, enables the creation of
* Describe project required support facilities, tools and environments that can be used to automate many

personnel, and services aspects of large scale Mission Critical Defense Systems
" Provide a detailed description of the project software development. Even without automation, the use of

development approach: techniques, services, Ada improves the quality and productivity of the project
documents, tools, etc. engineering personnel in all phases of the life cycle. The Ada

* Describe project organizational structure and concepts in compilers and linkers used in software
interfaces development, change, testing, and maintenance phases support

" Describe standards to be applied to the project configuration control for the systems which provides a stable
design, development, and test efforts baseline for controlling software and document changes.

" Describe or reference Quality Assurance, These concepts provide additional advantages in the
Configuration Management, hardware/software development and maintenance phases by allowing separate
integration, and security plans. compilation of packages.

The first coordination task will be coordinating approval of the Ada Concepts Sunnorting Project Management.
project plan. The same intensity applied to this effort should
be applied to all future coordination efforts to ensure the The Software Engineering explicit support designed into the
successful development or enhancement of the Mission Critical Ada language exhibits the type of support provided to Project
Defense System. The responsibilities are identified in the Management by Ada concepts. There are other specific
plan. concepts that provide Project Management support:

Information hiding, data abstraction, modularity, localization,
Ada STRUCTURAL CONCEPTS uniformity, completeness, confirmability, rigidity, structural

architecture, and software reusability. Other Ada concepts,
The Ada language is specifically designed to improve the not included in thps list, also contribute to integrating and
quality of software by reducing programming and interfacing supporting the 1', ,;ct Management effort for developing or
errors. Ada's strong data typing and numerous compile-time enhancing Mission Critical Defense Systems. Project

51 9th Annual National Conference on Ada Technology 1991

Management support provided by Ada concepts can be viewed structures and constructs into the development of new systems
as direct, that which is visible/quantifiable, or indirect, that and the enhancement of existing systems are not Ada concept
which is not visible in the process but visible in the resultant maximizing approaches. This is an area currently being
products. addressed, and the constantly improving approaches now

being validated will address some of the existing management
Ada Concents Directly Sunporting Proiect concerns to be resolved.

Maaazmg.: Ada concepts that are classified as directly
supporting Project Management are those that enhance the Management Aonroaehes Being Used.
support of the tasks performed regardless of the software
language used. These are requirements definition, The approaches being used to develop and enhance Mission
requirements analysis, system design, system development, Critical Defense Systems are currently being fine tuned to
verification and validation testing, acceptance testing, quality address the inclusion of Ada concepts, but still utilize
assurance, configuration management, and project control, functional requirements and designs. Attempts have been
The rigidity of the Ada language and the structured architecture made, on small Mission Critical Defense System
enhance the support of Project Management in all these tasks developments, to develop requirements as functions then
by providing a structured environment. During the Mission convert them to objects prior to design. This has met with
Critical Defense System's life cycle, the Ada concepts of limited success but does increase the use of Ada concepts
information hiding, data abstraction, modularity, localization, during system design. The current approaches being used
uniformity, completeness, and confirmability can be observed employ functional decomposition to design and develop the
as individually and collectively enhancing the support of architecture for the software. The frame work employed in the
Program Management task accomplishment. Ada Compiler approach is based on the reason for use and the inherent
features such as date time stamping and separate compilation advantages of the frame work, i.e., waterfall, spiral, or Rapid
of packages support configuration management in the Prototyping. The current methodologies being used,
configuration control of the software. The metrics supported Structured Analysis and Design, Structured Development for
by the Ada language provide Program Management with the Real-Time Systems, and Distributed Design vary the frame
status and control information to perform their management work but still rely on functional descriptions of requirement
functions. The results of applying these Ada concepts may not for design and development. The Ada concepts that can be
be immediately quantifiable, but they can be measured after the identified and implemented in the selected approach are being
fact. incorporated and used to enhance the systems developmentand to support Project Management.

Ada ConceRts Indirectly Supporting Project

MaWWAg=lli: The Ada concepts that are classified as indirectly Existing Management Concerns.
supporting Project Management are those that enhance the
support of the tasks performed during the development or New approaches for developing or enhancing Mission Critical
enhancement of Mission Critical Defense Systems, but cannot Defense Systems need to support the integration of
be easily observed or measured until product delivery. The management levels as well as maximizing the use of the Ada
same Ada concepts that are classified as providing direct concepts, constructs, structure, and architecture. Object
support also provide indirect support in the form of improving Oriented Design needs to develop a front end process that
the quality of the Mission Critical Defense System software. develops user requirements as objects or converts functional
The Ada concept of software reusability indirectly supports requirements to objects. Major effort still needs to be applied
Project Management throughout the life cycle by incorporating to requirements definition. New methods should strive to
and reusing verified and validated software, plus developing incorporate graphical modeling techniques to represent the
and maintaining a library of reusable software for developing real-world behavior of the Mission Critical Defense System.
or enhancing systems. The Ada concepts of uniformity, Likewise, new methods should support the use of other formal
completeness, and confirmability indirectly support Project specifications and establish limits for the use of Ada as a
Management in evaluating and ensuring that these traits exist in specification language. New approaches should incorporate
the Mission Critical Defense System in addition to improving the principals and concepts of objects and Ada representations
the quality of the product. The Ada concept of inherent in charts, diagrams, and program design language. The new
modeling capability indirectly supports the Project approach selected must improve the integration of Ada
Management task of evaluating and approving system design concepts and management coordination during the
structure and progress. development or enhancement of Mission Critical Defense

Systems.

MANAGEMENT APPROACHES
TO Ada INTEGRATION INCORPORATING Ada INTO

MISSION CRITICAL DEFENSE SYSTEMS
Current management approaches used by the Department of
Defense in the development and enhancements of Mission Currently the incorporation of Ada into Mission Critical
Critical Defense Systems were not developed to maximize the Defense Systems is accomplished either during system
use of Ada language concepts. These approaches and development or as an enhancement after the system has been
methodologies, which were designed, developed, and developed and deployed during Post Deployment Software
validated prior to Ada, use a functional approach. The new Support. New systems normally incorporate Ada partially or
management approaches, such as Object Oriented Design, fully during system development. Existing systems can
Jackson System Development, and TRW's Distributed incorporate Ada either as an evolutionary development or as an
Computing Design System, attempt to incorporate the Ada enhancement during Post Deployment Software Support.
language concepts and features, but are limited in the portion Incorporation of Ada during development or enhancement has
of the Mission Critical Defense System Life Cycle which they certain inherent benefits and associated risks which must be
address and have not been validated by the Department of evaluated by Project Management before deciding when and
Defense for system development or enhancement. The how to incorporate Ada. Department of Defense progress in
management approaches being used to integrate the Ada incorporating Ada in Mission Critical Defense System

9th Annual National Conference on Ada Technology 1991 52

developments and enhancements reflects the current growth in Deployment Software Support would be an enhancement to
use of the Ada language. the system. The complete incorporation of Ada would also

include the use of the Ada language and the related
Inerglrmtinw Ada During Development- management concept changes required during development.

Post Deployment Software Support uses the same functional
Mission Critical Defense Systems development presents the requirements development approaches as those used during a
opportunity for complete incorporation of Ada language new development. The risk associated with the support
concepts, constraints, architecture and software. Currently, contractor personnel's Ada experience level would be similar
there are two general approaches being used for the to that of a development contractor. Project Management will
incoporation of Ada in new systems, either compete or partial also have to modify the impacts and effects of Ada on the
incorporaion of the language and its concepts. Each approach Mission Critical Defense System's life cycle. The benefits of a
has its unique benefits and associated risks. complete incorporation of Ada during Post Deployment

Software Support are better coordinated requirements
Cmpete Incorortion of Ada During Development: definition with the support contractor being closer to the user,

The complete incorporation of Ada during Mission Critical and the greater ease of clarifying requirements when evaluating
Defense System development includes not only the use of the a product. The pressure to field a Mission Critical Defense
Ada language but also the employment of related management System update is less than that for the initial fielding of the
concepts. Using current functional requirements development system. There are also lessor risks than those associated with
approaches does not maximize the use of Ada concepts developing a new system in a new language. The baselined
whereas object oriented approaches have not been validated for environment of a Post Deployment Software Support Mission
major system development. The risk associated with Critical Defense System provides stability to the enhancement
developing a new Mission Critical Defense System in a new process not available to a new systems development. These
language is directly impacted by the development personnel's are only a few of the factors to be considered by Project
Ada experience level. Project Management must be prepared Management in evaluating when and how to incorporate Ada
for the different emphasis and impact of Ada on the into a Mission Critical Defense System.
requirements definition, requirements analysis, software
design, and software development phases of the Mission Partial Incoporation of Ada During Post Deployment
Critical Defense System that is visually uniform, structurally Software Su t: The partial incorporation of Ada in a
complete, logically correct, and provides the Ada benefits. Mission Critical Defense System during Post Deployment
The Ada benefits are reusable software, reduced programming Software Support enhancement may or may not require
and interface errors, improved software quality, and a more inclusion of Ada related management concepts, and will
thoroughly tested Mission Critical Defense System. These are require minimum or no modification of functional
only a few of the factors to be considered by Project requirements enhancement approaches. The risk associated
Management in evaluating when and how to incorporate Ada with a new system in a new language does not exist, only the
into a Mission Critical Defense System. risk associated with a new language. The emphasis of project

management on the Ada life cycle phase will also only be
Partial Incoporation of Ada Durine Development. The impacted by the percentage of Ada code in the total system.

partial incorporation of Ada during Mission Critical Defense The benefits of using Ada will be more observable than in
System development may or may not include the employment partial incorporation for a new system, due to the
of Ada related management concepts depending on the establishment and maintenance of a software reuse library in
criticality of the portion incorporating Ada. Partial the Post Deployment Software Support Environment plus the
incorporation does not maximize the use of Ada concepts so retention and use of software portability information in this
functional requirements development approaches will require environment. As before, these are only a few of the factors to
minimum or no modification. The risk of developing a new be considered by Project Management in evaluating when and
Mission Critical Defense System with a new language will be how to incorporate Ada into a Mission Critical Defense
less and corresponding to the percentage of Ada code in the System.
total systm. The emphasis on Project Management during the
life cycle phase will only be impacted by the percentage of Ada MISSION CRITICAL DEFENSE
code in the total system. The benefits of using Ada will be SYSTEM Ada PROGRESS
limited and may not be observable. Again, these are only a
few of the factors to be considered by Project Management in The progress being made by the Department of Defense in
evaluating when and how to incorporate Ada into a Mission incorporating Ada in Mission Critical Defense Systems reflects
Critical Defense System. on a limited scale the growth of Ada language use in industry.

Incornorting Ada During Post Denloyment Soft.

Post Deployment Software Support enhancement of an
existing Mission Critical Defense System with Ada provides
reduced risks to the system compared to complete
incorporation of Ada in a new system. The risks associated
with partial incorporation of Ada in development or
enhancement are approximately equal and will be proportional
to the percent of Ada incorporated in the Mission Critical
Defense System.

Complete Incorporation of Ada During Post
De et Software Su ot: The complete incorporation of
Ada in a Mission Critical Defense System during Post

53 9th Annual National Conference on Ada Technology 1991

THOMAS S. ARCHER

TELOS Systems Group
P. O. Box 909

Sierra Vista, Arizona 85636

THOMAS S. ARCHER has a
Bachelors of Science in
Mathematics. The author has
over 29 years experience in the
design, development, and
implementation of complex

Mission Critical Defense Systems application software.
Mr. Archer is presently a Senior Systems Engineer for a Post
Deployment Software Support contractor, Telos Corporation,
providing technical support to the All Source Analysis System
program and the system's proposed conversion to Ada.

.Archer has developed and presented "Ada in the Post
Deployment Software Support Environment" at the October
1989 Tr Ada Confrence and "Portability: A Key Element in
Life Cycle Productivity" at the March 1990 Sig Ada
Conference.

9th Annual National Conference on Ada Technology 1991 54

On Decomposing an Ada CSCI of a Large Command and Control System

into TLCSCs, LLCSCs and Units: With Suggestions for Using DOD-STD-2167A

Lewis Gray

Ada PROS, Inc.

hhsku Sections 2 through 5 of this paper discuss the most

This paper smm s uidelines used to develop the Computer interesting guidelines and some of their rationales,

Software Components (TLCSCs, LLCSCs) and Units of a 3, reflect on their use during software development in
line Computer Software Configuration Item (CSCI), coded in Ada, 1987 (from Preliminary Design through CSC
for a large U. S. Army command and control system, and discusses Integration and Testing), and offer suggestions on how
interesting results of their use. It concludes by offering suggestions to prepare to use DOD-STD-2167A. 4 The suggestions
for using DOD'STD'2167A. reflect three years of additional thought abut the

The purposes of the paper are to present actual guidelines, and software organizational structure.
results of their use, and to alert projects to the petential
complexity of the decisions when CSCs and CSUs are created. An 11 The DOD-STD-2167 "static structure". Paragraph
earlier version of the paper appeared in Implementing the DOD- 4.2 of DOD-STD-2167, entitled "Computer software
STD-2167 and DOD-STD-2167A Software Organizational organization" requires software development
Structure in Ada, a report of the Association for Computing
Machinery (ACM) Special Interest Group on Ada (SIGAda) contractors to organize their contractually-deliverable
Software Development Standards and Ada Working Group software into a hierarchical structure of CSCIs, TLCSCs,
(SDSAWG) Software Organization Subgroup, August 190. LLCSCs and Units. Figure 1 (Figure 3 of the standard,

entitled "CSCI sample static structure") gives a
graphical example of such a structure. CSCIs, TLCSCs,
LLCSCs and Units can be called 'elements' of the

1. Context structure.

As part of the initial phase of a project to develop a The elements are defined in section 3 of the standard,
large U. S. Army command and control system, object- then the definitions are extended and clarified
oriented design (OOD) guidelines were developed and elsewhere in the standard and in its Data Item
tested.1 Descriptions (DIDs). The discussion can be

summarized as follows:
Some of the guidelines were results of a study of the
transition from structured analysis (for software Computer Software Configuration Item (CSCI) -

requirements analysis) to object-oriented design. A A CSCI is defined in terms of a configuration
* review of the transitioning method developed by that item, which is said to be "hardware or
study appears in an earlier paper.2 software, or an aggregation of both, which is

designated by the contracting agency for
Other guidelines were results of an investigation of configuration management."5 The standard
issues associated with developing the organizational also says that a CSCI is a "part of a system,
structure of Computer Software Configuration Items segment, or prime item."'6

(CSCIs), Top Level Computer Software Components
(TLCSCs), Lower-Level Computer Software Computer Software Component (CSC) - "A
Components (LLCSCs) and Units that is required by functional or logically distinct part of a
DOD-STD-2167. 3 These guidelines are summarized in computer software configuration item.
this paper. Computer software components may be top-

level or lower-level [i.e TLCSCs or LLCSCsI."7

This section of this paper first briefly presents the key 'TLCSCs and LLCSCs are logical groupings. 8

concepts of the DOD-STD-2167 software organizational They are also "architectural elements of the
structure, for the benefit of readers who need this CSCI...
background (experienced users of DOD-STD-2167 or
DOD-STD-2167A may wish to skip this discussion). Unit - "Each Unit shall perform a single
Then it quickly summarizes the capabilities that CSCI function."1 0 A Unit is "the smallest logical
designers had to provide, and the requirements that entity specified in the detailed design which
they were given, completely describes a single function in

55 9th Annual National Conference on Ada Technology 1991

i I II I I* a iM

EEQ r E'r n1

FIGURES. SCI smple static structure.

Figure 1. The DOD-STD-2167 Software Organizational Structure

sufficient detail to allow implementing code Decomposed Into - During Detailed Design,
to be produced and tested independently of "each TLCSC is decomposed into a completeother Units. Units are the actual physical structure of LLCSCs and Units."17 According

entities implemented in code."11 Like CSCs, to the standard, the decomposition is
Units are 'architectural elements of the described in the SDDD. 18
CSCI."12 A Unit may be "a part of more than

one TLCSC or LLCSC.. •,1 And the standard Make Uip - ". .. various TLCSCs, LLCSCs and
suggests that they may be elements of more Units.. .make up the CS....-
than one CSCI as well -- in particular a Unit
may "reside in a library" for use "in many Partitioned Into - "The partitioning of the CSCI
places" in which case it may appear in a into TLCSCs, LLCSCs and Units may be based
design document suggested by the standard on.. ,,"20
to describe another CSCI.14

Refined Into - During Detailed Design, the
The standard also indicates that CSCIs, CSCs and Units standard urequires the contractor to "establish
take part in several relationships. Five are specifically the complete, modular, lower-level design
me. ntioned: for each CSC[, by refining TLCSCs into

LLCSs and Units "21

Consists Of - CSCIs "shall consist of one or more.o .TLCSCs. Each TLCSC shall consist of. Despite these definitions and clarifications, the
.LLCSCs or Units. LLCSCs may consist of standard never dictates exactly how the elements are to
other LLCSCs or Units."15 In a similar be associated with the contractually-deliverable
passage, the standard refers to".. .eac n CSC software, that is, how CSCs and CSUs are to be mapped
and its constituent TLCSCs, LLCSCs and to things in an Ada program library. On every
Units.. "16 software development project, someone must decide.

Te sIt is very important that this decision be carefully

9th Annual National Conference on Ada Technology 1991 56

... ... = =ne for nennchm uSI bm reinn TNI ~ into

considered and well founded, because it can severely 2.1 Allocating functional. interface and performance
impact the project's cost and schedule. guiremnit. Creating CSCs and Units can require

complex decisions and creative thought equivalent to
12 The CSCI capabilities. Figure 2 summarizes the that required for software design and functional area
operational situation that CSCI designers faced. The management. It must be guided by an understanding
basic requirements for the CSCI were to provide the of the software because it will determine how the
capabilities for interactive users to store, retrieve and software's design will be presented during the formal
update information in several data bases, and to design reviews (Preliminary Design Review (PDR),
generate and transmit reports. Critical Design Review (CDI)). It must be guided also

by an understanding of management and technical
13 The starting point for software desiners: Essential tasks such as calculating design progress, informal
Systems Analysis. Essential systems analysis 2 2 is a testing, and controlling the CSCI's developmental
rifinement of structured analysis. Its standard configuration. The way the elements are created can
products, similar to those of structured analysis, are make each of these tasks significantly harder or easier
Data Flow Diagrams (DFDs), a data dictionary that than expected. For example, a well-known design
defines all the names (e.g. of processes, data flows, data progress metric is the percentage of Units that have
stores) that appear on them, and mini-specifications been completely designed.2 This metric is reasonable
for their lowest level ("primitive") processes. Tom only for the case where the Units are more-or-less
DeMarco 23 calls these products, taken as a whole, a equivalent in size and complexity. Otherwise the

of interest. simple, unweighted ratio should be altered to take
"system model" of the system oaccount of their varying difficulty, since it will affect
The starting point for software design was a system their cost to complete.
model contained in a Software Requirements
Specification (SRS). There was a DFD in the SRS for Specifically to ensure that impacts on software projecteac CSI apailiythat showed its decomposition management and the other functional areas of the
each CSCi capability, project would be considered, responsibility for creating

the TLCSCs was assigned to a person with an
The SRS for the CSCI was unusual in that all understanding of the entire development effort. The
functional requirements in it were expressed by means software design team leader during Preliminary
of the system model. There were no "shall"-like Design, who was responsible for performing the initial
statements of functional requirements, for example, decomposition of the CSCI into TLCSCs, was
except those in the system model. The paragraphs in responsible (de facto) for establishing cooperative
the SRS where such statements would normally working agreements among most of the major
appear contained only pointers to the system model, functional areas of the project, i.e. software
which was attached as an Appendix to the document. engineering, formal qualification testing, software
All the CSCI's functional requirements were described product evaluation, and software configuration
there, either on DFDs or in their mini-specifications, management.
In this SRS, it was common for a single functional
requirement to correspond to half a page or more of Sample guidelines for allocating requirements to
text. software organizational structure elements are listed in

Table 1.
2. Guidelines for Decomposing the CSCI intoLnCSCs. LLCSCs and Units t 2.2 Associating CSCIs. TLCSCs. LLCSCs and Units with

subsets of Ada program libraries. Earlier investigation

Project guidelines for decomposing the CSCI into of the software organizational structure in 198626 led
TLCSCs, LLCSCs, and Units were in three parts. First, the project to implement CSCIs, TLCSCs, LLCSCs and
there were guidelines for allocating requirements. Units in terms of sets of Ada compilation units in the
These described how functional, interface and following way:
performance requirements in the CSCI's Software
Requirements Specification (SRS) and Interface CSCI A set of compilation units that is also a
Requirements Specification (IRS) would be allocated to configuration item. CSCIs contain CSCs
TLCSCs, LLCSCs and Units during Preliminary Design and Units (as subsets). The CSCI for the
and Detailed Design. Second, there were guidelines for project was described by a Software
associating TLCSCs, LLCSCs and Units with parts of the Requirements Specification (SRS), an
CSCI's Ada program library.24 Third, there were Interface Requirements Specification (IRS)
several guidelines for testing the composition of and a preliminary Database Design
TLCSCs, LLCSCs and Units. In some cases, these were Document (DBDD).
sophisticated "sanity checks" of the number and the
roles of the elements. In other cases, they defined CSC A set of compilation units. CSCs contain
element documentation guidelines, including some (TLCSC) Units (as subsets). Although changes to
that were met by means of the project's compilable (LLCSC) CSCs are controlled during the
Ada Design Language (ADL) standard. development cycle, CSCs are not

57 9th Annual National Conference on Ada Technology 1991

/I

Reports

Users ~J

Databases

Figure 2. CSC1 Capabilities

confipration items. Typically, a CSC will to the level of the first subunit.
satisfy several functional, interface or
performance requirements that are logically Project design and coding standards led designers tocohesive from the point of view of the compile program unit specifications and bodies
customer, or the eventual CSCI users. separately. This resulted in sets of physical files for the

CSC Is, CSCs and Units that were suitable forUnit One or more Ada compilation units that organizing in a structure of file directories thatdefine a library unit, and its associated mirrored the software organizational structure. Onesecondary units. ANSI/ MIL-STD-1815A- influence to take this approach was the DOD-STD-21671983 defines a library unit as a subprogram requirement that Units must be testable independentlydeclaration, a package declaration, a generic of other Units. The proect recognized early that thisdeclaration, a generic instantiation, or a coleacmlse egantly by an implementation
subprogram body.27 The secondary units strategy that made it possible to simply enclose eachcan be described as a compilation unit that Unit in test drivers for Unit testing.
defines the proper body of a library unit, or
a compilation unit that defines the body of
a program unit that is declared within a 2J Testing the Composition of TLCSCs. LLCSCs andseconary unit. ,

Figure 3 graphically summarizes this approach down "IS aniy hecks" Table 2 lists sample

9th Annual National Conference on Ada Technology 1991 58

guidelines for checking the reasonableness of the documentary information about Ada program units
choice of elements. The purpose of creating such a list into documentation of the elements, and thereby
was to provide a tool for checking the quality of the provide much of the information about the elements
software organizational structure before production of that was required by the Software Top Level Design
the Software Top Level Design Document (STLDD) Document (STLDD) and Software Detailed Design
began. We reasoned that correcting a poor element Document (SDDD) DIDs.
early in design would be much less expensive than
correcting it after delivery of a design document.

Some of the guidelines in Table 2 are adaptations for
CSCs and Units of criteria for selecting configuration The guidelines for decomposing the CSCI resulted
items that appear in Appendix XVII of MIL-STD- from investigating fifteen decomposition
483A.29 DOD-STD-2167 suggests in paragraph 4.2.1 that considerations.3 Several of the considerations are
they may be used for creating CSCs and Units as well. listed in Table 4. They fall into the following five
The project resolved to test that suggestion. categories:

Table I. Some Interesting Guidelines for Allocating Requirements

to TLCSCs, LLCSCs and Units

1. CSCs will be allocated one or more functional, Interface or performance requirements.

2. The Initial allocation of requirements to TLCSCs will occur prior to the development of the Ada
program Ilrary units that will eventually constitute them. The allocation process is a device for
subdividing the design work among multiple design teams.

3. At the time CSCs are first defined, functional similarities among requirements In the requirements
database, suggested by mini-specs and the initial, candidate list of classes, objects and operations,28

will guide the creation of an appropriate number of functional groupings of requirements. Each of
those functional groupings will be allocated to a TLCSC.

4. Functional requirements which are highly data or control interdependent should be allocated to the
same CSCs. Functional requirements which exhibit a high disparity between Input and output data
rates should be allocated to separate CSCs.

5. TLCSCs and LLCSCs will be assigned to a "tearm of software designers. A team could consist of a
single designer, but more often it will probably contain 2-3 designers. Units will be assigned to
Individuals.

6. Units will be allocated only a single functional or interface requirement.

7. Other things being equal, one allocation of requirements to CSCs and Units will be preferred over
another i it Is clearer in the first case how requirements in the requirements documents have been
grouped.

Element documentation guidelines. 1. Descriptions of the software organizational
Project guidelines called for developers to provide the structure elements in the applicable standard
information shown in Table 3 for each Ada program (DOD-STD-2167 and its DIDs);
unit developed in the project's compilable Ada Design 2. Criteria for selecting configuration items in
Language (ADL). Much of the information exists to MIL-STD-483A;
respond to requirements in the Data Item Descriptions 3. Software design vs. design presentations;
(DIDs) for the deliverable design documents. But some 4. Presenting a design using Ada as a design
of it was suggested by an early paper on IEEE Project language; and
1016, which presented recommended practices for 5. Expected users of the software design
describing software designs.30 documents.

Table 3 describes project ADL guidelines for The goal of the investigations was to review every
documenting Ada program units. Where are the obvious potential influence on decomposition criteria
guidelines for documenting elements of the software before choosing decomposition guidelines for the
organizational structure? By associating the elements project. Each of the categories is a major source of
with Ada program libraries, as described in paragraph influence on how contractors should choose the
2.2 of this paper, the project was able to combine the information to present at the formal design reviews

59 9th Annual National Conference on Ada Technology 1991

comp1iJW'tunit- Unit ,
I iiitdfines a Proper body of a

Aibrary unit program unit that is ,TLCSC \
,' declared within the '

body of the library unit 1% /
', /I -

\prper body ofthe the
library unit Other Units,/

\ ',," ~iiiii~i? ,'"LLCSCs

CSC /CC
csc

CSCI

Figure 3. Associating TLCSCs, LLCSCs and Units
with Subsets of an Ada Program Library

(PDR, CDR). The number and the complexity of these logical, but not physical, CSCs, should not be
influences are normally not discussed in papers about implemented by things that the standard calls physical,
implementing CSCIs, CSCs and Units/CSUs. Projects code.
should bite the bullet and consider all of them, at least
once, before they start down the long, long road of a Some argue that an Ada package that collects logically
DOD-STD-2167 or DOD-STD-2167A software related types or operations is a logical grouping. But
development contract. they also have to admit that it is code -- there is no

question about that. And the standard calls code
To give the reader a feel for what was done by this physical. So the package, or any other program unit for
project, four of the considerations are reviewed below, that matter, was not felt to be a good implementation

of a DOD-STD-2167 CSC.

31 When implementing the static structure. logical Because DOD-STD-2167A dropped the terms 'logical'
entities should replace logical elements. and physical and 'physical', 32 this constraint does not apply to CSCs
entities should replace physical elements, described by the new standard.

DISCUSSION: DOD-STD-2167 explicitly introduced a .2 CSCs and Units should be chosen by managers at
new distinction between logical things and physical some level of the project, to establish the "optimum
things. One of the logical things that it mentions is a management level" for the project. i.e. the level below
"logical grouping". Although the standard does not which they delegate control. and give up visibility in
mention it, a very familiar example of a logical the period between reviews,
grouping is a set. The example that the standard gives
of a physical thing is code. The point of this DISCUSSION: DOD-STD-2167 states that guidelines for
consideration is that things that the standard calls selecting CSCIs contained in MIL-STD-483A, Appendix

9th Annual National Conference on Ada Technology 1991 60

Table 2. Some Guidelines for Checking the Reasonableness of

Software Organizational Structure Elements

1. No requirement will be allocated to a CSC or Unit that does not appear In a requirements document.

2. No requirement will be allocated to a LLCSC or Unit unless It is also a requirement of at least one
TLCSC that encloses It.

3. Functional requirements allocated to a CSC or Unit should not be partitionable into subsets that are
local to separate geographic areas. Moreover, requirements allocated to physically distinct processors
in a distributed environment should be allocated to separate CSCs or Units as well.

4. Compilation units provided by different suppliers should be assigned to separate CSCs or Units.

5. A collection of compilation units should be identified as a separate CSC or Unit if [its failure] would
adversely affect security, human safety, the accomplishment of a mission, or nuclear safety, or would
have a significant financial Impact.

XVII, "may also be applied to selecting TLCSCs, LLCSCs the programs, not to relive their discovery."39 He
and Units."3 3 MIL-STD-483A describes CSCIs as compares the process of designing and documenting
management tools. It calls their selection "a software to discovering and publishing mathematical
management decision"34 , not a technical decision. The proofs:
selection "reflects an optimum management level
during acquisition.. .at which the contracting agency "Mathematicians diligently polish their proofs,
specifies, contracts for, and accepts individual elements usually presenting a proof very different from the
of a system."3 5 Management below a certain level of first one that they discovered. A first proof is often
detail is known to be counterproductive. So, "the the result of a tortured discovery process. As
selection is normally limited to the designation of mathematicians work on proofs, understanding
configuration items to major subsystem levels of the grows and simplifications are found.. .The simpler
Work Breakdown Structure, or to a critical item of a proofs are published because the readers are
lower level. .. ,,36 But the standard cautions that interested in the truth of the theorem, not the
.choosing too few or the wrong elements as process of discovering it."40
configuration items runs the risk of too little control
through lack of management visibility."37 If CSCIs are Parnas explicitly recommends that projects should
management tools, then CSCs and Units must be as distinguish between the design activity where one
well. discovers what data types, operations and modules are

appropriate for implementing a system, and the
The qualifications of the managers considered here presentation activity where the results are explained.
were assumed to include a position sufficiently high in An interesting paragraph in MIL-STD-881A makes the
the project's organization that they were familiar with same point in a different way: "all reporting
all its CSCIs and met regularly with peers in all the requirements for the project shall be consistent with
functional areas of the project, for example software the project/contract [Work Breakdown Structure]
development management, software engineering, WBS. The organization of reporting requirements
fory- 1 qualification testing, software product shall not be construed by either the DoD component or
evaL-aion and software configuration management. the contractor as determining the manner in which
The managers were assumed also to be sufficiently the defense materiel item is to be designed or
close to the software engineering technical decisions, produced."4 1 In this case what is true for a missile or a
and sufficiently experienced technically, that they were ship is true for a CSCI also: it is a mistake to confuse
capable of constructively contributing to the decisions, the way a contractor describes progress with the way a
technically, product is designed or produced.

~3 Neither the elements of the static structure. nor The discovery process and its methods, for example
the relationships between them, need reflect the object oriented design, are not the topics of software
methods used by designers to solve the problems of 1) design documents, any more than the means by whichmehoi data and onetrol structures for the software. a mathematical theorem was discovered is the topic ofor 2)decomposin the software into modles, the proof, unless the designers have to fall back oncertain principles of the design method in order to

DISCUSSION: David Parnas argues that "those who explain the design.
read the software documentation want to understand

61 9th Annual Naional Conference on Ado Technology 1991

Table 3. Some of the Information to be Provided About Each ADL Program Unit

1. The origin of the software [e.g. another vendor, Internal development].

2. If developed internaly, the names of Its authors.

3. An explanation of why It exists, 1e. what role It plays In the design. This can Include a description of
the control logic that governs Invocations of Its compilation units, e.g. the normal timing and
sequencing conditions under which they execute.

4. A statement of what It does, I.e. what requirements In the requirements specifications It satisfies.

5. A description of how external devices are used by It.

6. A description of the algorithms carried out by It.

7. A list of exceptions that may be raised within It, and the conditions under which they may be raised.

8. A list of exceptions that may be handled within It.

9. The major information sources (references) used to suggest or guide Its design.

3 Expressing a design in a comrpilable Ada Design Government Program Manager (PM) need to know in
LanMage is implementation ("coding"). order to effectively manage a large software

DISCUSSION: To avoid semantic clashes with development contract?

Government reviewers about whether its compiled L Reflections on the Use of the Guidelines.
ADL was source code, the project stated its position at
the start that it was. Two simple tests indicate that this Most of the guidelines listed above were carried out.
is the case. First, since the design language is Some of the most interesting results of using them are
compilable by an Ada compiler, it satisfies the described below.
definition of the Ada language. Thus the product of
writing in the design language is Ada source code, 4.1 The project's review contractors were out of step
regardless of how it is advertised. Second, if the design with evolving Government thinking about the
languag" text constitutes a necessary part of the software organizational structure. The project's
deliverable program libraries for the system, then it is a definition of a Unit as a collection of compilation units
part of the system's source code by definition - that is belonging to the same Ada program unit, and a CSC as
the system would not function properly if it were a set of Units, is echoed in a recent Government paper
removed. In that case, the act of writing it is obviously by the Joint Logistics Commanders Subgroup on
"coding", or implementation, as those terms are used Computer Software Management (JLC/CSM).43 The
in every day speech, regardless of when that act occurs project's review contractors in 1987 attacked the
in the life cycle. definition because it defined a Unit solely in terms of

Ada program library units. The reviewers advised theOther related considerations that are not discussed in Government contracting activity that, at a minimum,
this paper (for example 6 and 7 in Table 4) attempted to the definitions should add the requirement that Units
test whether it was practically possible to identify a be Ada packages, and should forbid the use of Ada
design 'ubset of the deliverable source code ihat was procedures and functions as library units, except in
appropriate for presentation at formal design reviews unusual cases. The Government paper by the
(Preliminary Design Review (PDR) and Critical Design JLC/CSM three years later sides with the project on this
Review (CDR)). issue.

The driV ing question behind all the project's work on In another example of the same kind of situation,
these topics was, exactly what information about the review contractors at the time heavily criticized the
software design should the project present to the project's decision to reject all requirements that
Government at PDR and CDR? David S. Maibor, the relationships between the software organizational
principal author of DOD-STD-2167, and others4 2 structure elements, i.e. the lines between elements in
emphasize how important the question is. It is only Figure 3 in DOD-STD-2167, must reflect control or data
part of a larger question that goes to the core of why the flows, or visibility / compilation relationships, or
Government releases Data Item Descriptions (DIDs) program unit nesting within the deliverable software.
with DOD-STD-2167 and DOD-STD-2167A: what does a Although the project's position was consistent with

9th Annual National Conference on Ada Technology 1991 62

paragraph 42.1 of the standard, and it has turned out to one operation on a database. Since all objects that
the same position that the Government takes in the represented databases were collected into the Data Base

recent JLC/CSM paper, reviewers advised the customer Interfaces TLCSC, most of the functional requirements
in 1987 that the software organizational structure traced to that CSC.
should correspond to the compilation dependencies
among Ada compilation units. The situation was similar, or more exaggerated, for

most of the other CSCs. For example, there was an
4. Bias in favor of object-oriented techniques Events TLCSC that, by definition, collected objects
prevented the creation of functional CSCs. Guideline 3 associated with every functional requirement. As a
in Table I was never followed. External objections by result, all functional requirements traced to it. The
reviewers who felt that object-oriented software design impact on the requirements traceability matrix in the
should result in an object-oriented software STLDD, for example, was to link nearly every TLCSC to
organizational structure, and internal objections by each functional requirement.
some project staff members with the same idea, made
it impractical to carry it out. As a result, the CSCs were This sent the wrong message to the Government that
created to collect Ada program units that implemented to verify that a single functional requirement had been
similar objects. For example, objects that represented satisfied by the design, the Government would have to
databases were collected together in the Data Base examine all the compilable Ada Design Language
Interfaces TLCSC. (ADL) for the entire CSCI. The real situation was that

Table 4. Several Interesting Considerations that were Investigated

1. When implementing the static structure, logical entities should replace logical elements, and
physical entities should replace physical elements.

2. The lines on the static structure should not be interpreted as a representation of the control flow
within the CSCI, or of nesting within the Implemented code.

3. CSCs and Units should be chosen by managers at some level of the project, to establish the
'optimum management lever for the project, I.e. the level below which they delegate control, and give
up visibility In the period between reviews.

4. Neither the elements of the static structure, nor the relationships between them, need reflect the
methods used by designers to solve the problems of 1) choosing data and control structures for the
software, or 2) decomposing the software Into modules.

5. Expressing a design in a compilable Ada Design Language Is implementation ("coding").

6. Writing program unit specifications Is implementation, and may be design as well. Writing program
unit bodies is only Implementation.

7. Every main program in the system presents design information, and they should all be described in
the design documents for the system. The specification of every program unit that is used by the main
program (that is named in a *with* clause38) should also be described somewhere in the design
documents, and so should the specifications of all the program units that are used by their
specifications, and so on in a transitive manner.

This approach caused a serious problem with only a limited amount of the design contributed to
requirements traceability matrixes in the software satisfying any single functional requirement. This
design documents. It led also to the need to create became clear much later during CSC Integration and
functional threads for CSC Integration and Testing. Testing. But, because of the particular combination of
Both of these impacts are described below. the way requirements were represented in the SRS and

the way CSCs were created, the requirements
J. Satisafyng functional requirements with object- traceability matrixes in the software design documents
oriented CSCs led to uninformative requirements hid this fact.
traceability matrixes in the software design document&
The functional requirements for the CSCI, written into J. Although the CSCs were object-oriented, they had
its SRS, were components of data flow diagrams to be tested by means of functional threads. r')OD-STD-
(DFDs), primarily their mini-specifications, i.e. the 2167 only requires (paragraph 5.5 and its
processing logic of the DFD's lowest-level primitive subparagraphs) that contractors test aggregates of Units
processes. Most of the requirements included at least during CSC Integration and Testing. It does not

63 9th Annual National Conference on Ada Technology 1991

require that the aggregates be identical to CSCs. It 4. Too much project time w2s spent oi internal
became apparent before the CSC Integration and disputes about the guidelines. There are topics, like
Testing phase that only functional aggregates of Units security, contracts, accounting database design, testing
could be informally tested against the functional and Ada(!!) where people seem reluctant to take a
requirements in the SRS. So, the project defined strong personal stand that contradicts what specialists

functional threads, one thread per functional say. This is not the case for the elements of the

reuiement, that consisted of all the Units needed to software organizational structure. The guidelines

satisfy that requirement. The threads crossed all the described in this paper were carefully explained to

TLCSCs of the CSCI. They were documented in a every one on the project who showed an interest.

special set of thread development files, similar to the Whether because of this openness or not, people

Software Development Files (SDFs) for the Units. seemed surprisingly disposed to challenge the
guidelines with personal positions which they

4. A small change in the guidelines could have led defended aggressively and doggedly. One example of

to doubling the she of the SDDD. despite no change at this has already been mentioned above, the position

all to the deliverable software. The guidelines in that object-oriented software design should result in an

paragraph 2.2 above resulted from a study of the object-oriented software organizational structure.

software organizational structure that began in 1986.. Another example is the belief held tenaciously by some

They were carefully matched to the project's design at the time that DOD-STD-2167 requires contractors to

and coding standards to provide the kind of integrate Units into CSCs, test the CSCs in isolation,

information appropriate for the formal design reviews and then integrate the CSCs into a CSCI. In fact,

(PDR, CDR) without causing excessive documentation. paragraph 5.5 of the standard and its subparagraphs
only require that aggregates of Units be tested. The

Alternate guidelines in use by another Ada project in standard leaves it to the contractor to choose which

the same company could have been used. Although Units to aggregate for testing.

project personnel were not aware of this at first, they
could have led to a substantial increase in the size of Over time, positions like these burned up significant

the software design documents. The alternate project resources in inconclusive meetings and

guidelines were not used by the project, but for a continual debates.
different reason because they did not seem as good at
achieving the structure of logical and physical 4. The guidelines freed key software designers from

elements that DOD-STD-2167 required. However, worrying about how to complv with DOD-STD-2167
while evaluating the project's guidelines after CSCI documentation requirements. which let them

Testing, it was discovered that the alternate guidelines concentrate on solving software design problems. The

could have increased the number of CSCs in the CSCI guidelines for decomposing and documenting CSCIs,

from 36 to 229 TLCSCs plus an unknown number of together with the project's Ada software design and

LLCSCs, more than six times their original number. coding standards and procedures, were in place before

They could have increased the number of Units from software design began, and they addressed all of the

229 to 845, more than three times their original DOD-STD-2167 documentation requirements. The

number. Yet there would have been no change at all combination of the guidelines and the design and

in the software itself. Estimating conservatively, the coding standards and procedures specified what design
size of the SDDD (for the same software) easily could characteristics and decisions were to be documented
have doubled if the alternate guidelines had been used. where. Much of the documentation was done within

the Ada design language for the CSCI, as a natural part
L The use of object-oriented design led to a kind of of design, through structured comments like "-IF.
internal software reuse that violated the guideline to 101.1.1.4.19 UpdateEPWEvacuation" which marks a
assign only a single functional requirement to a Unit. compilation unit that satisfies functional requirement
Guideline 6 in Table 1 states that a Unit could trace 101.1.1.4.19 in the SRS. Key designers concentrated on
back to only a single functional requirement. The applying the project's chosen object-oriented design
guideline was an attempt to comply with what seemed method to satisfying the requirements in the SRS.
to be the spirit of the definition of Unit in paragraph
3.23 of DOD-STD-2167, and the requirement in A few decisions about compliance with DOD-STD-2167
paragraph 5.3.1.2 of the standard that "each Unit shall design document DIDs still remained. Many of these
perform a single function." addressed the content of the charts and diagrams to

include in the design documents, for example data

It happened that functional requirements for the CSCI flow or control flow diagrams, compilation

were equivalent usually to several "shall" statements, dependency diagrams, call-tree diagrams showing

because each functional requirement was the which program units invoked which others,

p g logic of a Data Flow Diagram (DFD). performance charts (sizing and timing characteristics),
ce functional reuirements in the and requirements traceability matrixes. A majorBecause many of the fucinlrqieet nte decision had to be made about how to group the Ada

SRS were similar to one another in te general nature

of what they described, for example interactive use of a program units that the designers were creating into

database, an object developed for one requirement was TCSCs, and LLCSCs. All of these remaining decisions

often used for many, which violated the guideline. about compliance with the standard were assigned to

9th Annual National Conference on Ada Technology 1991 64

the very small group of top design leaders who were .2 Expect that confusion and debate about the
software designers themselves but with overriding software organizational structure will complicate
responsibilities for meeting schedules and satisfying software development contracts for years, David
both technical and contractual requirements, and who Maibor often says about Figure I above that
had frequent contact with their peers in functional "illustrating a CSCI's elements with this tree structure
areas like configuration management and testing, has caused countless problems for the Government
outside their own area of software engineering. and industry."45 In support of this, approximately 40

per cent of the issues in the JLC/CSM paper deal, in
one way or another, with the nature of CSCs and CSUs
or how they should be implemented in Ada. Similar

Several imprtant lessons glimmer among the results issues appeared in the 1986 SDSAWG Issues and
described aove. Subissues Report.4 6 The longevity of the issues

suggests their difficulty. Also, the prolonged
51 Don't assume that software designers are the best disagreements about guidelines that are described

uified to create CSCs and CSUs. because a CSC's above suggests that people tend not to change their
software organizational structure is not its software positions easily on these topics.

azchlihtu, l It is clear that it is possible to change the This situation is part of a larger problem. In a
CSCs and Units of a CSCI without changing its presentation to the Department of Defense Software
software. For example, the number of TLCSCs and Working Group, in support of the DoD Software
Units for the CSCI could have been increased Master Plan, Ole Golubjatnikov stated that "the main
dramatically merely by changing the guidelines in cause of cost escalation in defense software
paragraph 2.2 above. The reason for this is that development is the improper application,
individual CSCIs, CSCs and Units just named interpretation, demonstration of compliance, and
collections of software. For example, Data Base enforcement of specifications and standards."4 7 He
Interfaces, one of the CSCI's TLCSCs, was just a name went on to say what many feel in the defense software
for a collection of Ada compilation units that industry, that many organizations, both in industry
implemented objects of a particular kind. It is easy to and Government, are still far from understanding how
see that a different collection could have been created to use DOD-STD-2167 or DOD-STD-2167A effectively.
without changing the software itself, just by drawing
the boundaries of the CSC in a different way. For Papers like the JLC/CSM paper help to counter the
another example, although the CSCs for this project problem. The Government has started to extend the
were object-oriented, when the time arrived for CSC tailoring handbook for DOD-STD-2167A 48 to include
Integration and Testing, they were tested in functional an additional Rationale volume and an Application
threads. The guidelines above would have allowed us volume. If these are completed and released, they will
to simply call the functional threads CSCs in the first help much more. But I believe that years will pass
place, and this would not have affected the software in before the problem is solved.
any way.

Meanwhile, software development contractors, their
The software architecture of a CSCI is a high-level customers and the customer's reviewers often disagree
view of its software design. It is an abstraction of the about what the elements of the software organizational
software that shows the relationships among its structure are. Meyer et al. 49 describe a recent case like
significant parts. To change the software architecture this.
of the CSCI, it is necessary to make a substantive
change to some characteristic of the software, like its 5. So long as controversy and confusion persist
compilation dependencies, its calling relationships, its about how to develop the software organizational
algorithms or the data structures that it creates. One structure. delegate the job to specialists who have
has to change a part, just like to change a compilation technical and management-level understanding of the
dependency in an Ada program, one has to change a proJect's deliverable data items. and regular access to
"with" clause, or create a subunit. Merely giving a new t. 4.3 through 4.5, and 4.7 above hint at the
name to a collection of compilation units does not get potential cost of misunderstanding the software
the job done. organizational structure. A personal, non-scientific

poll of colleagues over the past few years has
Since we can change the software organizational persuaded me that development technicians in several
structure without changing the software architecture, tunctional areas of large software development
and vice versa, it is clear that they are not the same contracts waste half of their working hours during
thing, and that the software organizational structure is software design trying to understand DOD-STD-2167A
not the software design either. It follows from this that so that they can comply with it when the time comes
software designers are not necessarily any better at to deliver data items to their customers. The
creating CSCs and CSUs than anyone else. immediate result is that scheduled technical activities

languish during this period. Moreover, if a
contractor's understanding of DOD-STD-2167A leads it
into a conflict with its customer, or its customer's

65 9th Annual National Conference on Ada Technology 1991

reviewers, which often happens, responding to product"? I mean that the data items would be as
requests for clarification and deficiency reports from consistent and complementary and non-redundant
the Government can burn up a significant part of the when they were delivered as they would have been if
remaining budget for design. The ultimate result is they had been developed by a single person. For any
that the software is completed later than scheduled, at given fundamental (or "atomic") piece of information
a higher cost than budgeted. required by a DID, it is possible for a project to know

whether it is required by the DID of another CDRL
It is common practice for contractors to hand the DID item and who its authors will be in each case. When
for the DOD-STD-2167A Software Desin Document this is known, the project can require that one author(SDD) to a software designer and say, in efect, go figure write it, and the other authors reference it, thereby

it out and write the document. Typically, this practice achieving consistency across documents and reducing
just adds another untrained opinion to the on-going cost. Software designers are not interested in such
debate about what CSCs and CSUs are. Often, Ada work, and they have no time to pursue it in most cases
software designers do not have enough job experience even if they were.
to understand project management, software
configuration management and informal testing. The product architects would report to a product
Also, they are not familiar with the situation of architecture group to be managed by a second-level
Government employees or contractors who have to project manager. Figure 4 shows the product
review several thousand pages of deliverable architecture group on a sample organization chart for a
documentation in one or two weeks. Like the other large project.
technical personnel on the project, they are also
affected by compartmentalization of development SA Establish a product architecture group now. First,
activities along the lines of the major functional areas software contractors who expect to obtain large Ada
in DOD-STD-2167A, i.e. software development software development contracts from the DoD should
management, software engineering, formal establish immediately a permanent product
qualification testing, software product evaluation and architecture group staffed by specialists on developing
software configuration management. Typically, it is Ada software in compliance with DOD-STD-2167A.
expected that they will understand their part of the This group should begin immediately to analyze the
software development process very well, but only DIDs associated with the standard and with other
vaguely understand the rest. standards that might be imposed on the same

contracts. The goal of this work should be to identify
A better way to prepare an SDD would be to create a the atoms of information that are assembled in
team consisting of the software designers and a different ways into all the deliverable data items for
seasoned DOD-STD-2167A document development the expected contracts. The group should also produce
specialist with an Ada software development and a plan for reusing the information during the course of
project management background. The designers a contract.
would design, using the tools and methods that were
best suited to the application domain and target Second, prior to contract award, the product
hardware, and the post-deployment software support architecture group should deliver to the customer a
conditions (who takes the time to review these now?). proposed tailoring of the applicable standards and
The specialist would develop the SDD, consistent with associated DIDs for that contract.
the other applicable deliverable documents, for
example the SRS and IRS from the earlier Software Third, following contract award, the product
Requirements Analysis phase, and the Interface Design architecture group should coordinate development of
Document (IDD), the Software Test Plan (STP), the all CDRL items. It should establish a system for
Software Test Description (STD), and the Software reusing the information in the data items that
Development Files (SDFs) that are created at the same complies with the reuse plan. And it should define
time as the SDD, and deliverable documents required the configuration items in the System / Segment
by other standards that might have been contractually Design Document (SSDD), and the software
imposed such as DOD-STD-7935A 50 or DOD-STD-1467 organizational structure elements in the SDD.
(AR) 51. The specialist would guide compliance with
the software configuration management procedures in
the Software Development Plan (SDP), and assist
configuration management and quality audits. Finally, 1OOD Readiness Task Report, Volume I - Procedures for Object
the specialist would maintain contact with the Oriented Design, and Volume II - Rationale, Army WWMCCS
customer for the purpose of keeping up-to-date on Information System (AWIS), Project Management Office, Fort
what to tell the customer about the design at the Belvoir, VA, 22 May 1987.
formal design reviews. 2Gray, Lewis, "Transitioning From Structured Analysis to Object-

Oriented Design," in Proceedings of the Fifth Washington AdaThink of the specialist as an architect who builds the Symposium, June 27-30, 1988, pages 151 - 162.
various and different data items on the Contract Data
Requirements List (CDRL) into a single, integrated 3 DOD-STD-2167, Defense System Software Development, U. S.
logical work product. What do I mean by "logical work Department of Defense, 4 June 1985.

9th Annual National Conference on Ada Technology 1991 66

Figure 4. Sample Project Organization Chart

Showing the Product Architecture Group

4 DOD-STD-2167A, Defense System Software Development, U. S. 1 7DOD-STD-2167, Appendix B, paragraph 20.4.5.2.c, page 70.Department of Defense, 29 February 1988. 18DI-MCCR-80031, "Software Detailed Design Document",
5DOD-STD-2167, paragraph 3.12. paragraph 3.1, pages 1-2. See also pages 5 and 7 in the same
6DOD-STD-2167, paragraph 4.2. 19DOD-STD-2167, paragraph 5.7.1.1, page 39.

7DOD-STD-2167, paragraph 3.7. 20DOD-STD-2167, paragraph 4.2.1.

8 DOD-STD-2167, paragraph 4.2. 2 1 DOD-STD-2167, paragraph 5.3.1.2.

9 DI-MCCR-80028, "Data Base Design Document", paragraph 22McMenamin, Stephen M. and Palmer, John F. Essential Systems
10.2.5.4, page 7. Analysis. New York, NY: Yourdon Press, 1984.
1 0DOD-STD-2167, paragraph 5.3.1.2. 23 DeMarco, Tom. Concise Notes on Software Engineering. New York,

11DOD-STD-2167, paragraph 3.23. NY: Yourdon Press, 1979.

24 This association process is also called "implementing the
12DI-MCCR-8028, "Data Base Design Document", paragraph software organizational structure in Ada".
10.2.5.4, page 7.

25See, for example, AFSCP 800-43, Software Management
13See DI-MCCR-80031, 'Software Detailed Design Document", Indicators, Air Force Systems Command, 31 January 1986, page 10.
paragraph 10.2.5.3.1.3.1, page 10.

26 Gray, Lewis, "Design vs. Coding: The Special Case of14The standard is vague on this point. The relevant passage Development with a Compilable Ada Design Language According
appears in the DID for the SDDD, and it reads as follows: to DOD-STD-2167," unpublished paper, discussed at meetings of

"In addition, if Unit Y is used in many places and resides in a the ACM SIGAda Software Development Standards and Ada
library, this subparagraph shall identify: (1) the library by Working Group (SDSAWG), July 1986, November 1986.
name and number and (2) the Software Detailed Desi gn
Document, by configuration name and number, in which the 2 7ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada
library description can be found (if not in this document)." Programming Language, U. S. Department of Defense, 17 February
(DI-MCCR-80031, "Software Detailed Design Document", 1983, page 10-1.
paragraph 10.2.53.1.3.1, page 10).

28The project used a method for transitioning from structured
DOD-STD-2167, paragraph 4.2. nalysis to object-oriented design that produced a candidate list

of classes, objects and operations directly from the DFDs in the16DOD-STD-2167,paragraph 5.7.1.1.1. SRS. The method is described in Gray, "Transitioning From
Structured Analysis to Object-Oriented Design."

67 9th Annual National Conference on Ada Technology 1991

2%UL-STD.483A (USAF), Configurahon Management Practices for Group, Defense Acquisition Board, Science and Technology
Systems, 4quipment, Munitions, and Computer Programs, U. S. Committee, coordinated by the JTC 1, Subcommittee 7, USA TA,
Department of Defense, 4 June 1985. 16 November 1989, page 5-47.
30 Barnard, H. Jack, et al., "A Recommended Practice for 48MIL-HDBK-287, A Tailoring Guide for DOD-STD-2167A,
Describing Software Designs: IEEE Standards Pro't 1016," in Defense System Software Development, U. S. Department of

=EEE Trasctions on Software Engineering, Vol. SE-12, No. 2, Defense, 11 August 1989.February 198, pages 258- ,. 49Meyer, Charles A., Lindholm, Sharon C., and Jensen, Jack L.,31Gray, Lewis, "Considerations When Implementing the DOD- "Experience in Preparing a DOD-STD-2167A Software Design
STD-2167 Static Structure: Mapping CSCIs, TLCSCs, LLCSCs and Document for an Ada Project," in Proceedings: Tri-Ada '89,
Units to Logical and Physical Components of an Ada Program Association for Computing Machinery, New York, pages 118 - 124,
Library," in OOD Readiness Task Report, Volume li - Rationale, also in this report.
Army WWMCCS Information System (AWIS), Project
Management Office, Fort Belvoir, VA, 22 May 1987. 50DOD-STD-7935A, DuD Automated Information Systems (AIS)

Documentation Standards, U. S. Department of Defense, 3132See Gray, Lewis, "Understanding CSCLs, CSCs and CSUs," in October 1988.
this report, page 1.4. 51DOD-STD-1467 (AR), Software Support Environment,U. S.33See DOD-STD-2167, paragraph 4.2.1, page 15. Department of Defense, 18 January 1985.
34MIL-STD-483A, paragraph 170.4.3, page 113, and paragraph

170.9, page 118.
35M1L-STD-483A, paragraph 170.4.2, page 113.

36MIL-STD.483A, paragraph 170.4.2, page 113.
37MIL-STD4183A, paragraph 170.4.3, page 113.
38For a discussion of with clauses, see the Reference Manual for
the Ada Programming Language, paragraph 10.1.1, page 10-2.
39See Parnas, David Lorge and Clements, Paul C, "A Rational
Design Process: How and Why to Fake It," in IEEE Transactions
on Software Engineering, IEEE, New York, Volume SE-12, #2,
February 1986, section VII, page 256.

401bid.

41MIL-STD-881A, Work Breakdown Structures for Defense
Materiel Items, U. S. Department of Defense, 25 April 1975, Lewis Gray is the President of Ada PROS, Inc. an Ada
paragraph 4.10, page 7. technology transfer small business founded in 1989 that

specializes in reducing the cost of defense software programs
42See Maibor, David, "Insights and Observations on DOD-STD- through consulting and training on the sensible use of DoD
2167 & 2167A," in this report, page 1-15. See also, Gray, Lewis, software development standards. As a senior staff engineer at
"Understanding CSCIs, CSCs and CSUs," page -. TRW Federal Systems Group, he created and implemented Ada

software development standards for the Army WWMCCS
43Joint Logistics Commanders, Joint Policy Coordinating Group on Information System (AWIS) Phase 1, and led such software
Computer Resources Management (JPCG-CRM), Subgroup on engineering activities as the preliminary design effort, and CSC
Computer Software Management (CSM), "Software Development integration and testing. As the program's Assistant Technology
Under DOD-STD-2167A: An Examination of Ten Key Issues," Director in Phase 2, he led its technology assessment and
invited paper presented at Tri-Ada '89, U. S. Department of technology transfer activities. Previously, at GTE Government
Defense, 25 October 1989, pages 9 - 10, in this report. Systems Group, he was Ada development methodologist for a

large information management system. Prior to that, at
44 Gray, Lewis, "Design vs. Coding: The Special Case of INTELLIMAC, Inc., he was Deputy Program Manager and a
Development with a Compilable Ada Design Language According technical team leader of the Tactical Ada DBMS (TAD)/Army
to DOD-STD-2167," unpublished paper, discussed at meetings of Field Artillery Tactical Data System (AFATDS) subcontract. He
the ACM SIGAda Software Development Standards and Ada earned the B.A. degree from Stanford University, and the B.A.
Working Group (SDSAWG), July 1986, November 1986. (mathematics) and M.A. and Ph.D. degrees (philosophy of

science/technology assessment) from Indiana University. He is a
45David Maibor Associates, Inc., Seminar an DOD-STD-2167 / former National Science Foundation Postdoctoral Fellow2168i aibo A0siates, I(technology assessment). Dr. Gray is a frequent speaker on2168, Spring '90 series, software development standards and Ada, and Chair of the
4 6Firesmith, Donald G., Issues and Subissues Rornnrt of the ACM Association for Computing Machinery (ACM) Special InterestGroup on Ada (SIGAda) Software Development Standards andSIGgda Software Development Standards and Ada Working Ada Working Group (SDSAWG).
Group (SDSAWG), Association for Computing Machinery (ACM),
Special Interest Group on Ada (SIGAda), 27 October 1986. Readers can write to the author at Ada PROS, Inc., 12224 Grassy

Hill Court, Fairfax, Virginia 22033-2819 (Internet address:47 Golublatnikov, Ole, Defense Software Master Plan: A adapros@grebyn.com)
Mechanism for United States Information Sys mes Leadership, A
progress report and recommendations to the Software Working

9th Annual National Conference on Ado Technology 1991 68

AUTOMATIC PROGRAMMING SYSTEMS FOR Ada:
THEORY AND PRACICE OF OBJWI' ORIENTED METHODS

OF PROGRAM SPECIFICATION FROM REQUIREMENTS

William Ankn

Telos Corporation
55 North Gilbert Street

Shrewsbury, New Jersey 07702

AbstractREQU9MkEMENTI

An analytical model for an Automatic Programming System
(APS) for Ada is discussed. The model draws upon the UKLEDE
software technologies of neural nets, fuzzy logic, and object TERFACE BASE
oriented knowledge representation. Object oriented methods
are shown for analysis of requirements and design
representation so that a software program might be specified
in Ada language from user-stated requirements. IEENCE DESIGN

ucnENGINE REPRESENTATIONI

Automatic Programming is a topic in Artificial Intelligence f
that generally centers upon developing systems that are P N
capable of programming themselves. Due to the object WORATEER
oriented nature of Ada, the APS is formulatable by object WOKSTATI°
oriented methods. This paper states objected oriented
methods of program specification into Ada language from
user-defined, object oriented requirements. That is to say LIBRARY OF
that once user-defined requirements are formulated into object PRIMITIVE
oriented requirements, the object oriented requirements may EXECUTABLE PROCEDURES
be used to generate executable Ada code. This is an aspect of MODEL
automatic programming in that once the user-defined
requirements are "known" by the system, the system can then EXECUTABLE Ads PROGRAM
automatically generate executable code.

BFigure 1. System Overview

The APS discussed in the introduction is not known by this
author to exist as a complete system. However, the requisite
software technology for each of APS software components
does exist. The author has been involved in technology A high-level description of the system is as follows:
development and investigation in the following areas:

I) The user interacts with an expert system comprised of a
I) Object oriented analysis user interface, rule-based knowledge base, and
2) Object oriented design representations inference engine to refine requirements into hierarchical
3) Neural nets object class relationships.
4) Fuzzy logic 2) The inference engine then provides object control flow
5) Knowledge representation/expert systems linkages between the objects of the knowledge base.
6) Ada language This results in object control flow diagrams as a design
7) Computer inference, representation.

3) The neural net instantiator then "fills out" the design
This paper does not present a detailed nor exhaustive representation from a library of Ada primif ve
treatment of each of these software technology areas, but procedures.
rather an approach to their systematic usage in developing an 4) The filled-out design would be compiled, binded, and
APS for the Ada language. linked to produce an executable model that would be

run at the user interface.
Sstm Overview

A more detailed description of the system, which explores the
The system overview depicted in Figure 1 is a preliminary technologies of the components, follows in the succeeding
design which integrates technologies that have been explored. sections.

69 9th Annual National Conference on Ada Technology 1991

User The knowledge base would consist of hierarchical object
class frames. Each frame would consist of an object class,

The user interface would be a rule-based windowing system. its subclasses, and the operations and attributes of the
Windows would be hierarchical according to the levels of the respeve objects. Membership in classes would be by fuzzy
requirements. The user interface would also allow windows set membership rules (with probability of membership in the
for executable models, thus providing feedback on class). The objects themselves are the result of an object
requirements specifications. An example rule depicting oriented requirements analysis conducted by the Rule-Based
diagram is given in Figure 2. Figure 3 describes the System with the user.
hierarchical requirements windows.

Requirments
Engineer. 1) Specify requirement A with restrictions The inference engine would use fuzzy logic to refine

of... knowledge base frames and also fuzzy logic to chain objects
2) Specify requirement B with restrictions together into object control flow diagrams. This chaining

of... procedure occurs when an object modified by its operation(s)
has a fuzzy identity (@.90) with another object.APS User

Interface: If requirements A and B are specified, what Design Representation
are the restrictions on requirements C and D?

Design is represented by object control flow diagrams as
shown in Figure 4.

A BETOPERATION OJC

PRIMITIVE PROCEDURE (OBJECT PAIR)

OBJECT HIERARCHY DIAGRAM

Figure 2. Rule-Based User Interface Iteration
With Object Hierarchy Diagram Of Requirements

COMMUNICATIONS THROUGHPUT REQUIREMENTS Figure 4. Object Control Flow Diagram (OCFD)

DATABASE SERVER REQUIREMENTS

DATA BUFFER Neural Net Instantiator
REOUIREMENT The neural net instantiator would match object patch pairs

(primitive procedures) with object pairs in the OCFD design
representation. This neural net would generate a feature
space of object attributes. The OCFD would be read for
object attributes by a transducer program that updates the
feature space for matched attributes. The neural net with
updated features would complete missing features and then
fire up from features to recognized object pairs. Once an
object pair was recognized, its respective procedure would be

Figure 3. Hierarchical Requirements Windows mapped into the OCFD to form an executable model.

?th Annual National Conference on Ado Technology 1991 70

ESoftware Specification Techniques; Edited by N. Gehani and
A.D. McGetick; Addison-Wesley Publishing Co.. 1986

The executable model could be implemented as an Ada main

procedure with all procedure calls and necessary declarations Neurocomputing: Foundations of Research; Edited by
and a package of the primitive procedures recognized for the James A. Anderson and Edward Rosenfield; MIT Press,
program. 1988

PEmmer Worksaion
About the Author

The programmer workstation would allow for an
evolutionary development of the Ada APS by allowing the
APS system programmer to make revisions and updates to
the fonowins:

1) User nmerface rules
2) Inference engine fuzzy logic
3) Neural net attribute/object pair connectionism generation
4) Library of procedural primitives.

The system description given was purposely top level and
component oriented. A detailed description of the component
technologies is beyond the scope of this paper. The
analytical model of the APS presented in this paper is
intended to provide insight into methods of Automatic Mr. William Arden is a Principal Computer Engineer in the
Programming along with Requirements Refinement and Advanced Software Technology Branch of Telos
Engineering. Further, it suggests alternative methods of Corporation. His past work has included Objected Oriented
rapid prototyping and simulation of requirements. Analysis, Specification and Design, Neural Nets, Expert

Simulation Systems, and Requirements Engineering and
G a RResearch. He holds a B.A. in Mathematics from Stockton

State College, a MS in Electronic Engineering from
Object Oriented Programming Systems, Languages and Monmouth College, and is currently enrolled in a Ph.D.
Applications; Edited by Meyrowitz, Norman; ACM Press, program in mathematics at Stevens Institute of Technology.
1989 Address William Arden

Programmer's Reference Guide to Expert Systems; David Telos CorporationPr;ogarW.ams Refeen d oxpe S ; D55 North Gilbert Street
Hu; Howard W. Sams and Company, 1987 Shrewsbury, New Jersey 07702

71 9th Annual National Conference on Ada Technology 1991

An Approach to Ada Implementation of an Associative

Memory

E. K. Park and F. A. Skove C. S. Kang

Computer Science Department Dept. of Computer Science and Info. Systems
U.S. Naval Academy The American University

Annapolis, Maryland 21402 Washington, D.C. 20016

Abstract the stored data. As an example of CAM, a data word may
A simplified memory management scheme to solve problems be divided into three fields[I]: tag, bits indicate the type of
with content-addressable memory (CAM) and associative field (whether empty or used); label, which is the key word
memory (AM) is presented. CAM uses a parallel search. to be matched, and the actual data. In a search for label,
Thus, search time is drastically reduced. AM searches in the computer searches all memory locations of the correct
the same way, except that relational functions are used. type, as defined by the tag field, then looks for a match of
One problem with these techniques is cost of hardware. the key word with labels of that type. This is not sequential
This paper proposes a software simulation of AM hard- search; rather it is performed in parallel. Thus, the search
ware. This will greatly reduce costs, as well as provide is not slowed by the amount of information in memory.
a ready prototype upon which to test application software AM is similar, but instead of being limited to exact
for AM. Ada's ask construct was chosen for its powerful matches of key words with labels, related information may
communication techniques between concurrent processes. be accessed through the use of relational functions. Rela-
Tasks immediately tell each other that the keyword has tions may be direct, such as "less than," "greater than,"
been matched to data in memory and searching ceases. etc., or they may be iudirect. Indirect involves associations
This process cuts the search time by an average of one half of objects with values by using an attribute field. Thus,
compared to other concurrent constructs. Another prob- the object "car" may be associated with the value "GM"
lem addressed is that normally associated data cannot be because one of its attributes is "manufacturer." This is a
accessed without first knowing the proper keyword for its more powerful method than CAM, because an exact match
parent element, resulting in the loss of access to some data. is not necessary for an association. However, because of its
By allowing every memory cell to act as both an element generality, it cannot be as specific as CAM in information
and an attribute associated with another element, any in- retrieval.
formation in memory can be accessed via a keyword match.
Keywords: Ada Task, associative memory, concurrent sea-
rch, access and search time. 2 The Problem

There are several problems with CAM and AM techniques.
According to Chisvin and Duckworth[1], some of these prob-

1 Introduction lems are listed:
I. functional and design complexity of the associative

Content-addressable and associative memory techniques are subsystem
memory addressing methods that are unlike standard meth- 2. relatively high cost for reasonable storage capacity
ods of memory addressing. Conventional memory storage 3. poor storage density compared to conventional memory
is based on the storage of information in addresses. In a 4. slow access time due to available methods of implemen
conventional memory storage system, to access any mem- tation
ory space the CPU must be able to determine an address 5. a lack of software to properly use the associative power
for the desired data location. of the new memory systems.

Problems arise when using conventional memory stor- An additional problem that we have discovered with AM
age architecture. Calculations involved in the determina- is that associated data may only be accessed through the
tion of the effective address of a data word become time key field. That is, if we do not know the proper key, we
consuming. These addresses must pass serially through cannot access its associated data. This is analogous to the
a bus and become a limiting factor when considering the problem encountered when trying to look up a word in a
speed of transmission through the bus compared with the dictionary, but not knowing how to spell it. The informa-
speed of the CPU. The problem is known as the "von Neu- tion is there, but you cannot find it.
man bottleneck"[1]. When parallel processing is involved, Our research is twofold. First, we design a simplified
the effect is multiplied several times. Another disadvantage memory management system to implement a variant of an
to conventional memory is found in a search-and-compare AM using current technology. Using this system, we will
problem[2]. To search through a list and compare, an exact be able to store and retrieve information from memory and
match will be found, on average, halfway through the list. solve the last problem above (loss of access to associated
Thus, the so":ch time increases linearly with the size of the data). Our second goal, directly related to problem 2 above,
list. To remedy these problems, new memory techniques is to decrease the cost associated with AM hardware by us-
were developed[I]. ing a software simulation with concurrent processing. This

Content-addressable and associative memory methods could be readily transferred to a multiprocessor machine[3].
do not use addresses to store information in memory. In- We chose to use Ada's Tasks, but any language supporting
stead, they rely on key words and words associated with concurrent execution could be used (see section 4). Indi-

9th Annual National Conference on Ada Technology 1991 72

rectly, this approach will also provide a possible solution 3.2 Memory Partitioning
to problem 5 above by making a working AM model for
software development. Our solution for an improved AM To implement a parallel search requires either a multipro-
management system is divided into several parts. In sec- cessing system or a single-processor system with concurrent
tion 3.1 we discuss the specifics of the AM structure we have programming. Our design is based on a single-processor
designed. Section 3.2 discusses the issue of memory parti- system with concurrent programming. Ideally, each process
tionmg and why this is integral to our solution. Section would search one memory location and the search would
3.3 addresses the topic of using Ada Tasks to search each end in the time it takes to do one search. Unfortunately,
memory partition concurrently for matches to a keyword. this would require more processes than a typical system

could support, given an average-sized memory. Memory
must, therefore,be divided into equal size partitions, with

3 The Solution one process per partition. Each process then searches its
particular partition sequentially. Consequently, there are

Because of the lack of systems upon which to base appli- several parallel processes searching their own partition se-
cation software, software development for the AM systems quentially. The number of processes is determined by the
has been slow at best. Using our software-based system, system used.
we simulate a hardware implementation of AM. This could Theoretically, for N processes, the total search time
conceivably afford application software developers a proto- should be reduced by a factor of N. Because cpu throughput
type upon which to test their programs and expedite the slows for an increasing number of processes, the theoretical
resolution of problem 5, as defined by Chisvin and Duck- search time is not attainable. Faster searches are realizedworth[l] when using a multi-processor system, but again, theoretical

search speeds are not achieved. Section 3.3 addresses the

issue of search times.

3.1 Memory Structure
The basic memory structure is a cell with three fields: tag,
which is a boolean value indicating whether the cell is cur-
rently being used; data, which stores the actual data to be colo
matched; and a pointer to a list of other cells associated red color cold
with those data values. Figure 1 shows one cell whose data
are associated with the data in two other cells. Figure 2
shows a simplified view of a memory with 15 cells and their
associated data. It can be seen from Figure 2 that memory
is composed of many interconnected linked lists. apple winter

Each cell can be accessed directly by using a key that
exactly matches the data values in its data field. If the
search for a keyword matches the data field of an element
in memory, the search is successful and the data values are
returned with a list of associated data (see section 3.3 for
more information), uidn green

The second way that data values can be accessed is indi-
rectly, via the association list that follows data values found
as a match to a key. Thus, each cell may be either an ele-
ment, or data values associated with another element. Tra-
ditionally, AM allows associated data to be accessed only cow sumter
when a keyword search is successful and the search returns
the matching element and its associated data. By allowing
every cell to function both as an element and as associate
data, associated data may also be accessed directly. mortar

Figure 2. Sample memory with fifteen cells

flaq data attributeist

1 baseball

Figure 1. One cell with two associated cells

73 9th Annual National Conference on Ada Technology 1991

3.3 Manipulating Memory The task will be given exact memory locations according to
memory addresses. The following code implements one pos-

3.3.1 Searching Memory with ADA Tasks sible solution to the concurrent searching routine that we

We propose to use Ada's Task feature to concurrently search have constructed:
memory for a keyword. For example, to implement 10 par- TASK TYPE Search-Type IS
allel searches, we would partition the memory into 10 sec- ENTRY Search
tions and use 10 concurrent tasks, each sequentially search- (Findname: IN Name;
ing its own section of memory. This would speed the search Foundname: OUT Pointer;
drastically over a completely sequential search. However, Begin-Address: IN Address-Type;
requiring each concurrent process to completely search its End.Address: IN Address.Type)
memory partition is inefficient. Since, on average, a search END Search-Type;
is completed halfway through a list, search time could be
reduced by one half if the search could be stopped when the The type Search.Type allows us to make N tasks of the
keyword is found. Ada is ideally suited for this search be- same type, since they will all be doing the same operations,
cause of the ability of its tasks to communicate with each but in different memory locations. Findname is the name
other. Once a task matches a keyword to data in mem- we are searching for and Foundname is the pointer to the
ory, a pointer to the data is saved and all other tasks are memory location of the Findname. Begin-Address gives the
interrupted[4,5]. All data associated with the keyword are task the address of memory for which the task will begin
then returned. If no match is found, the tasks would return searching, and End.Address is the address on which the
nothing and the search would fail. task will end searching. Address.Type will be defined by

A Task basically allows two or more sequences of actions the actual implementation used for memory locations.
to be performed concurrently. For example, the code When a task type is defined, it must be accompanied

B(x) + C(y) by a task body which describes the sequence of operations
A :that the task will execute:

allows B(x) and C(y) to operate concurrently as opposed to
sequentially. A can only be calculated by first calculating TASK BODY Search-Type IS
B(x) and C(y). Address: Address-Type;

If a computer system has onl3 nne processor, the pro- BEGIN
cessor will allocate a specific time period to each task, very LOOP
similar to a time sharing system. The processor alternates ACCEPT Search
between the tasks operating by allowing each tasks to op- (Findname: IN Name;
erate a few instructions, and then another, to make the Foundname: OUT Pointer;
system appear to be executing the tasks simultaneously. It Begin-Address: IN Address-Type;
is with this rationale that we decided to choose tasks to End.Address: IN Address-Type) DO
implement our memory management technique. As stated - search memory between Begin-Address and End.Address
earlier, CAM and AM have slow access time due to the - until Findname is found
available methods of implementation. By using tasks to - when Findname is found tell all other tasks to stop
access our memory we will cut the time spent searching - searching
for memory cells considerably, since each task will be con- END Search;
currently searching instead of sequentially waiting for each END LOOP;
search to finish before starting. END Search-Type;

Tasks communicate with each other using ENTRIES,
ACCEPTS, and rendezvous. When executing a task, a sim- Taskl, Task2, Task3 TaskN: Search.Type;
ple ENTRY call is made to the task, which is very similar
to a procedure call. An ACCEPT call "accepts" the entry This declaration defines N independent tasks of type
call and ends the task's execution. For instance, assume Search-Type. Each task has its own copy of the variables
the existence of a task called SEARCH. If Processl makes in the task body, but can communicate with the other tasks.
an ENTRY call to SEARCH, then SEARCH is now execut- Our main program looks like this:
ing. SEARCH must wait until an ACCEPT call is made
by Process 1 to end its execution. Should Process 2 call BEGIN
an ENTRY to SEARCH while Process I is executing, it Taskl.Search(Findname =>Cow;
will be blocked. When Process I makes its ACCEPT call, Foundname =>Ptr;
the meeting point for SEARCH's ENTRY and ACCEPT is Begin.Address =>0000;
called the rendezvous. It is only when SEARCH receives its End-Address =>0100);
ACCEPT statement that the rendezvous is complete and Task2.Search(Findname =>Cow;
SEARCH may be called again by another process. Foundname =>Ptr;

In many situations, there is a need for several tasks to Begin.Address => 0101
do the same thing simultaneously, such as perform the same End-Address => 0200);
search on different data in memory. Ada resolves this situ-
ation by providing task types. A task type means that all TaskN.Search(....)
tasks of the same type have identical operations to coin- END;
plete. This brings us to our solution of the memory man-
agement system.

Initially, there is a given number N tasks (depending 3.3.2 Deleting information from Memory
on the system implemented) and a memory block allocated
for storage and retrieval of data. The memory must first be There are three separate possible cases when deleting an
divided into separate partitions according to the number of element and/or some or all of its associated attributes. The
tasks (N). Each task will have a specific partition to search. simplest case is deletion of the link between an element

9th Annual National Conference on Ada Technology 1991 74

and one of that element's attributes. The attribute is not
deleted from memory, nor is the element. They are simply 2. Delete ELEMENT's link to ATTRIBUTE-TO-BE-
"disassociated." The algorithm for DELETE (ELEMENT DELETED
(ATTRIBUTE-TO-BE- DELETED)) is: An example for DELETE (mortar (building)) is shown

in Figure 3. The results of this operation on the sample
1. Find ATTRIBUTE-TO-BE-DELETED in 15-cell memory (Figre 2) are shown in Figure 4.ELEMENT's attribute list The next type of deletion removes an element from mem-

a. Search each attribute of ATTRIBUTE-TO-BE- ory, and deletes all links between that element and its at-
DELETED and check for link to ELEMENT tributes. The attributes remain in memory. The algorithm
b. Delete that link to ELEMENT and then reset link for DELETE (ELEMENT) is:
in the attribute list

flag data attributelist
II mortar .'" - ... i. "

------ reseted link after deletion T qranigranite

Figure 3. Deleting the attribute 'buildinq' from the element 'mortar'

red color ,j cold

ice building green

I c ow pasture L summer (

mortar brick

Figure 4. Sample memory afterDELET.(mortar(building))

75 9th Annual National Conference on Ado Technology 1991

1. For every attribute X of ELEMENT, delete every link To implement a garbage-collection system, a list of free
to ELEMENT in the attribute list of attribute X and memory may be maintained. Free memory is linked by us-then reset link in the attribute list ing the AttributeList field of each cell to point to the

next free cell. Two additional pointers must be kept to2. Delete ELEMENT's attribute ist (set AttributeList point to the head and tail of the free memory list. Head-= null) Free-Memory points to the first free memory cell at the3. Delete ELEMENT (set Flag = 0) head of the list. Tail-Free-Memory points to the last freememory cell, where newly freed memory cells are added. In
An example for DELETE (mortar) is shown in Figure 5. the above example, step 2 of the above algorithm would be

The results of this operation on the sample 15-cell memory modified as:
(Figure 2) are shown in Figure 6.

flag data attributelist

1building

nor 'ar brick grn t

----..- reseted link after deletion building mortar

Finure 5. Deleting the element 'mortar' from memory

red clrcol d

ple gaswinter

I ice f r building green I

co CO 4 pasture summer

Figure 6. Samole memory after DELETE(mortar)

9th Annual National Conference on Ado Technology 1991 76

2. Delete ELEMENT's attribute list (set AttributeList and check attribute list and delete-all links to at-
= location pointed to by Tail-Free-Memory) tribute X or ELEMENT and then reset fink in the

2a. Set Tail-Free-Memory = ELEMENT attribute list
b. Set flag of each attribute X to 0

Finally, a user may wish to delete an element and all
of its associated attributes. This operation deletes the el- 2. Delete ELEMENT's attribute list (set AttributeList
ement, its attributes, all links between its attributes and = null)
each of their attributes. The algorithm for DELETE (EL- 3. Delete ELEMENT (set flag = 0)
EMENT) is:

An example for DELETE (mortar) is shown in Figure 7.
1. For each attribute X of ELEMENT, The results of this operation on the sample 15-cell memory

a. Visit each of its attributes (except ELEMENT) (Figure 2) are shown in Figure 8. Of course, the same
garbage-collection scheme can be implemented here.

mortar brick

building = mortar

1 granite

--. reseted link after deletion building

Fiqure 7. Deleting the element 'mortar' and all of its attributes

S red colo cold

apple gaswinter

S ice green

cow pasture summer

grae

Figure 8. Sample memory after DELETE(mnrtar)

77 9th Annual National Conference on Ado Technology 1991

3.3.3 Storing Information in Memory continues executing sequentially.
A S n The restriction that concurrent processes cannot com-
A single function suffices for each of the four cases encoun- municate with each other, as discussed above, limits the
tered when storing information in memory. ADD (ELE- search speed because the concurrent processes cannot in-
MENT, ATTRIBUTE) satisfies the following cases: form one another when one has successfully completed its

search. Another restriction with Cobegin/Coend is that
1) ELEMENT already exists and ATTRIBUTE does not, they cannot be nested. This limits application to simple
2) ELEMENT does not exist and ATTRIBUTE does, cases. Fork/Join is a more powerful construct that can

ELEMENT exists and ATTRIBUTE exists, but they contend with all possible combinations of concurrent ex-
are not associated with each other, ecutions. It is not as simple as Parbegin/Parend due to

(4) ELEMENT does not exist and ATTRIBUTE does not use of gotos. The resulting "spaghetti code" can be both
exist difficult to code and to debug.

The algorithm for ADD (ELEMENT, ATTRIBUTE) is:

Search memory to see if ELEMENT exists (see Section 5 Summary and Conclusions
3.3.1) This research for an improved AM system has advantages

over traditional memory systems as well as conventional
I. If ELEMENT exists, search memory to see if AM systems. Traditional memory search and retrieval time

ATTRIBUTE exists is relatively long due to the sequential nature of accessing
a. If ATTRIBUTE exists (case 3), establish links between physical addresses.

ATTRIBUTE and ELEMENT AM systems improve search and retrieval times by using
b. If ATTRIBUTE does not exist (case 1), a parallel search of a memory based on keywords. There are(1). Cae ATTRIBUTE ro feLeme attribute list several problems with conventional AM techniques, how-

2). Add ATTRIBUTE to ELEMENT's ever. One is the high cost of AM hardware. A possible
2. If ELEMENT does not exist, search memory to see if remedy would be to use a software simulation. Ada tasks

ATTRIBUTE exists were chosen to simulate a parallel search by dividing the
a. If ATTRIBUTE exists (case 2), memory into N partitions, using one task per partition.

I. Create ELEMENT When a task finds a match to the keyword for which it is
2). Establsh links between ELEMENT and searchinF, it communicates this to the other tasks and they

ATTRIBUTdoes not exist (case 4) stop their execution. This is an advantage that other con-b. If ATTRIBUTE nt currency constructs do not have; they must complete their
1.Cete ATMTRBT processes before returning control to the process that ini-biCreate ATTRIBUTE tiated the search. The use of Ada tasks will, on average,Establish links between ELEMENT and be twice as fast as constructs such as Parend/Parbegin andATTRIBUTE Fr/on

The diagrams associated with each case are omitted, Fork/Join.
but should be apparent from those provided for DELETE. Another common problem is the loss of access to infor-

mation associated with a particular data value if the key-
word is not known to the initiator of the search. This is

4 Comparison to Other Solutions solved by making each memory cell an element that can
be accessed by a searching task. A cell can function as an

This section compares our solution to other possible im- element or as an associated data value. Associations are
plementations ofpasoati search teches Ao ed maintained through the use of linked lists.
.plementations of associative search techniques. As noted This method would be ideally suited for a database sys-
earlier, Ada's Tasks are only one possible solution to our tem, and because of its logical separation of processes, could
concurrency control problem. Tasks were chosen for this re- be easily adapted to a true multiprocessor system. It is far
search for their ability to communicate between processes cheaper than its hardware counterpart, and could be used
executing concurrently. With this approach, once a key-
word is associated with data in memory, the task that found as a prototype for development of AM application software.
the data would immediately relay its discovery to the other Acknowledgement
concurrent tasks. Upon notification, all tasks would cease The authors would like to thank B. Hoyt and P. Moody for
execution, allowing search time to be reduced by an average their time and report on the topic.
of one half.

Other possible concurrent programming constructs in-
dude Parbegin/Parend (specifically, Concurrent Pascal's
Cobegin/Coend) and Fork/Join[6-8. CReferences

Parbegin/Parend is a simple construct that implements
concurrent processes. Any statements between Parbegin [1] Chisvin, Lawrence and Duckworth, R. James.
and Parend are executed in parallel, while statements out- "Content-Addressable and Associative Memory: Al-
side are executed sequentially. Concurrent Pascal's Cobe- ternatives to the Ubiquitous RAM", IEEE Computer,
gin/Coend is a specific implementation of Parbegin/Parend. Vol. 22, No. 7, July 1989, pp. 51-63.
A Cobegin statement simply marks N processes, each of [2] Bicault, Gary, "Juggling Multiple Resources", Byte.
which will concurrently execute to completion before the Vol. 13, No. 5, May 1988, p. 315.
creating process is allowed to continue. Once the Coend
statement is reached, execution of the main program is sus- [3] Park, E. K., Anderson, Paul, and Dardy, Henry, "An
pearled and the initial procedures marked as concurrent Ada Interface for Massively Parallel Systems", Proc. of
are executed. These processes can execute in any given or- IEEE International Computer Software and Applica-
der, and often change from one run to another. Once all tions Conf.(COMPSAC), October 1990, pp. 430-435.
the concurrent processes have completed, the main program

9th Annual National Conference on Ada Technology 1991 78

[4] Habermann, A. Nico and Perry, Dewayne E., Ada for
Experienced Programmers, Addison-Wesley Publish-
ing Co., Reading, Mass., 1983.

[5) Cohen, Norman H., Ada as a Second Language,
McGraw-Hill, Inc., New York, 1986.

[6] Deitel, H.M., Operating Systems, Addison-Wesley,
Second Edition, Reading, Mass., 1990.

171 Ben-Ari, M., Principles of Concurrent Programming,
Prentice-Hall International, Englewood Cliffs, N.J.,
1982.

18] Graham, G. S., Holt, R. C., Lazowska, E. D., and
Scott, M. A., Structured Concurrent Programming
with Operating Systems Applications, Addison-Wesley
Publishing Co., Reading, Mass., 1978.

79 9th Annual National Conference on Ada Technology 1991

ADDING PERSISTENCE AND GARBAGE COLLECTION WITHIN ADA

Steven. J. Zeil

Computer Science Department
Old Dominion University

Norfolk, VA 23529

Abstract a maintenance problem, since even small changes in the inter-
nal form must be reflected in the external form and may require

The Persistent Heap abstraction eliminates the need for nearly significant changes in the mapping code between the two forms.
all non-interactive I/O code. Objects allocated on this heap are An interesting alternative to traditional programming-
accessed via pointer types analogous to Ada's access types. Any language I/O features is provided by "database programming
objects created or modified during the current program execu- languages", which attempt to merge the power of traditional
tion are automatically saved on secondary storage prior to pro- programming languages with the storage handling capabilities
gram termination, Objects created by prior executions are wu- conventionally associated with database systems 3. The work de-
tomatically read into memory when a pointer to them is deref- scribed in this paper differs from these languages in that it em-
erenced. From the programmer's viewpoint, there are no I/O phasizes unobtrusiveness to the "traditional" programmer. Some
operations per se. A program simply traverses/accesses its ab- essential features from other database programming languages
stract data types in the conventional manner without worrying have been preserved, such as simple forms of transaction manage-
about whether the data components are in memory. The Per- ment. but the type system and data manipulation primitives are
sistent Heap also provides for garbage collection of unreachable drawn entirely from traditional programming languages. In par-
objects in both primary and secondary storage. ticular. we have rejected the tendency of most database program-

ming languages to organize persistent data into special "bulk-
data types. such as sets or relations 6 ,9 . Instead. we advocate

Introduction taking full advantage of the facilities for type construction and
data abstraction already present in Ada. In this, our approach
most nearly resembles that taken in PS-algol 1 '2 .

This paper describes an experiment aimed at providing Ada theaworescrbed thi aper was ot eb h
progammrs wth siple echnismforprorammng ith The work described in this paper was motivated by the au-

prrammterob s i a smpnaed mechnismr forsprogrthor's work on language-processing and analysis tools for the
persistent objects in a managed storage space. Arcadia 11 and TEAM environments 4 . It was apparent from ex-

Persistent objects are identifiable objects whose useful life- amination of the Ada code for these tools and of the error logs
times may extend beyond the execution of the programs that that issues of 1/O and storage management were occupying an
create them. Ada, like most languages. provides a standard file- tha t larg por n t e maementwre occepying asoriented approach to persistence. Among the drawbacks to this uncomfortably large portion of the !mplementors' time. I/O was
art aproh ta problem for the reasons outlined above. Storage managementrepresented an additional, related problem. Primary-memory

" Different operations are required for manipulating persis- management of persistent objects is complicated by the fact that
tent and transient (i.e., non-persistent) objects of the same one cannot safely deallocate an object that may be persistent
type. without first writing its current value to secondary storage. Fur-

thermore, the most common basis for deciding when to explicitly
" When used in conjunction with strong file types, generic deallocate an object (i.e., upon leaving the scope in which the

data structures are not easily provided with I/O operations. object was declared) is by definition inappropriate for persistent

" Programmers must often supply explicit code for transla- objects. Finally, the application area (language processing and
tion and/or linearization of elaborate data structures. analysis tools) added further complications because of the pre-ponderance of directed graph structures, many of them cyclic.

There is a significant temptation in practice to design ab- for which simple schemes such as reference counting would prove
stractions without provision for persistence. presumably with the ineffective. Secondary-storage management was also a concern.
intention of adding I/O later if circumstances require it, After- because the nature of persistent objects is such that they tend to
that-fact addition of I/O operations, however. may be quite dif- be shared among a variety of tools. making it difficult and danger-
ficult. Frequently it requires the introduction of a number of ous for any one tool to conclude than an object could be deleted
new data types (.external forms") capable of persistence and the from the secondary store. This difficulty is compounded by the
introduction of code to map between the internal and external possible later addition of new tools to the environment, utilizing
forms. In severe cases, the mapping may not be possible with- the same objects, but unanticipated at the time of creation of the
out alterations to the internal form (e.g.. adding back pointers earlier tools.
or other iaformation to aid in linearization). Once completed. Our goal was therefore to establish a simple means of adding
the additional data types and code required for I/O may pose persistence and storage management to our code. both the al-

This w rk was supported in part by grants NAG 1-439 from NASA Lang- ready developed Ada code and new code under development. To
ie Reseand Center and CCR-8902918 from the National Science Foundation. minimize intrusiveness, we sought a facility that could be used

9th Annual National Conference or, Ada Technology 1991 80

Operation Description
Transactions Begin.Session Start a transaction.

End.Session Commit a transaction.
Abort-Session Cancel a transaction.

Garbage BeginAccess Protect local references.

Collection End-Access
Misc. Select-Persistent.Store Names the database in which

to find the persistent heap.
Termination End-of-program clean-up.

Table 1: Persistent Heap Operations

Operation Description
Basic Deref Dereference a pointer.

CDeref Dereference a pointer,

changing the object.
Assign Copy a pointer.

a Compare pointers.

Persistence NamePersistent-nbject Bind a mnemonic
string to an object.

Get=NamedObject Retrieve the bound object.
Retract-Name Unbind a mnemonic.

Misc. Self-Hash Hash on ptr value.
Protect Protect an object.
Touch Communication protocol.

Table 2: Persistent Pointer Operations

preferably within the Ada language, or via a simple pre-processor a Persistent objects must be identifiable in some manner. The
from an Ada-like language into Ada, making only lexical and local conventional language mechanisms for identifying objects
syntactic alterations to the code. include variable names and pointers. The former are of use

Our approach centered upon the development of a Persistent only for objects local to some scope activation, a natural
Heap abstraction, which could be implemented using Ada's con- view with which we had no wish to tamper or justification
ventional abstraction and generic mechanisms. We were able to for doing so.
demonstrate an implementation of this abstraction for sequential
code in which no pre-processor was required, though a simple one s Pointers (access types) are the only primitive language type

would have added some additional convenience. Supporting this or type constructor in Ada that is not subject to I/0.

same abstraction for concurrent code, however, turned out to be
impractical without resorting to a more involved pre-processor,
due to a surprisingly subtle feature (or lack of one) in Ada. The Abstraction.

The next section of this paper introduces the Persistent Heap There is agreement that a natural model of persistence within
abstraction that forms the basis of our data model. After that, a language should offer persistence independent of type - objects
we describe the issues and design decisions governing the imple- of all types declarable within a language should be equally capa-
mentation of that abstraction, providing a sketch of our approach ble of persisting 3 . We therefore sought to provide an abstraction
to adding both persistence and garbage collection without alter- of "heap" and "pointer" that would alleviate the conventional
ation of the underlying run-time system. The paper concludes prohibition against persistence of pointers and, by implication,
with a description of our experiences using the sequential version of all types implemented using pointers. These abstractions are
to support the development of a number of programming environ- characterized by the operations showr in Tables 1 and 2.
ment components, and describes the difficulties we encountered The operations provided on the Persistent Heap (Table 1) are
in extending support to concurrent code. primarily concerned with establishing and managing the binding

between the in-memory portion of the heap and the accumulated
database of persistent objects on secondary storage. Hence, op-

The Persistent Heap erations are provided for naming the database to be employed,'
simple transaction control, and for protecting pointers local to a

In seeking to provide persistence and garbage collection, a 'Currently, programs may only access a single database at a time, and
focus upon the "heap" is appropriate for many reasons: inter-database references are not supported. An earlier version of the system

e The conventional heap provided by Ada is not required to actually did not impose these limitations, but the additional complications
this introduced into the design of the tool built using this system prompted

provide garbage collection5 , and commercial compilers do a retreat on this issue until a better interface for multi-database transactions
not, as a rule, provide it. and a multi-database name space could be agreed upon.

81 9th Annual National Conference on Ada Technology 1991

package Aleph.T.Pointers is new
Persistent-Pointers (T);

type Ptr is access T; type Ptr is new Aloph-T.Pointers.Pointer;
PI: Ptr; P1: Ptr;
1, Y: T; X, Y: T;
begin begin

P1 :a new T; Assign (Pl, Allocate(nev T));
X := P1.all; X :- Deref(Pi).all;

Pl.all :8 Y; CDeref(Pt).all :a Y;

a) Conventional Heap b) Persistent Heap

Figure 1: Sample Pointer Manipulations

function/procedure (which will be discussed later in connection objects that may be employed during an execution, the usually
with garbage collection). small fraction of those that have been altered and must be written

The operations provided on pointers into the persistent 'heap to secondary storage can be determined.
(Table 2) are intended to closely mimic those available on conven-
tional pointer/access types. Thus, pointers can be dereferenced Type Hierarchies.
to yield the objects they identify. 2 can be copied, and can be
compared for equality. Operations are also provided for bind- The benefits offered by the Persistent Heap tend to grow dra-

ing mnemonic names to selected persistent objects in a fashion matically with the depth and complexity of the type hierarchy

similar to that provided by PGraphite 1 2 . A hash function is pro- being manipulated by the program. The code in Figure 1, while
'ided on all pointers because our experience has shown that one it served to illustrate the basic operations offered by the Persis-

of the major reasons for programmers devising "do-it-yourself- tent Heap. is not representative. As a more typical example. Fig-

types logically equivalent to pointes has been the inability to use ure 2 illustrates portions of the program transformation sYstem

pointers within data structure implementations requiring faster- for the TEAM environment 4 . Figure 2a presents the declarations

than-sequential searches. An operation is provided to protect se- of some of the types employed by this system.

lected objects from garbage collection, as will be discussed later. e Type Transform.Sets describes sets of Transforms. and is
Finally. a Touch operation is used for all pointer types and types implemented using a reusable Sets generic. This generic
that contain pointers. This operation implements an inter-type employs the Persistent Heap internally in defining the type
communication protocol that is used by both the persistence and Set.
garbage collection mechanisms.

Ideally. a program employing the Persistent Heap should dif- e Type Transforms provides a 3-tuple of Pat.terns. called
fer from a conventional Ada program primarily in the replacement the "match", "copy", and "re-examine" patterns, respec-
of the built-in Ada access types by persistent pointer types. Fig- tively. The Touch operation must be defined for any type on
ure)a shows some typical manipulation of pointers on the conven- the Persistent Heap. For non-pointer types, Touch simply
tional Ada heap. Figure lb shows the equivalent manipulations invokes the corresponding Touch procedure for each compo-
of the Persistent Heap. Short as it is, this example demonstrates nent type, passing the Code value along. (The Codes type
the most commonly used operations on persistent pointers. Like is limited private with no operations visible to the program-
conventional access types, persistent pointers are strongly typed mer.) For pointer types, the Touch procedure is provided
and can be dereferenced to yield only a single object type. by the Persistent-Pointers generic.

To permit the tracking of references needed for garbage col- The "Assign" and other operations mentioned in the in-
lection. Persistent pointers are a limited private type. Thus they stantiation of the Sets generic are all derived from the
cannot be assigned using the standard Ada ":a", but the proce- Pointer type.
dure Assign is provided as a substitute.

For portability reasons and for efficiency in dealing with ac- 9 Type Patterns is a limited private type that represents a
cesses to small components of large objects. the Persistent Heap directed graph structure and is implemented elsewhere us-
is built using Ada's primitive heap allocation and deallocation ing the Persistent Heap. The primary constructor operation
mechanisms. New objects are created by surrounding a conven- for type Patterns happens to be named "Pattern".
tional Ada "new" expression by a call to Allocate.tionl Aa -ow-exprssin b a all o Alocte.The problem is. given a description of the relevant patterns.

Pointers are dereferenced via the functions Deref and CDeref. theroe s. of te rlat atterns.to generate a set of transforms and to make that set, the trans-
The difference between these two operations is that Deref is used forms, and the patterns persistent. Figure 2b shows the code for
to access a component of an object. but CDeref is used to alter a this problem as generated by the front-end to the transformation
component of an object. The two cases must be distinguished for tis pre a en rt be fronted to the tra nsfor

system. For each transform to be created, the three patterns are
persistence reasons, so that among the large numbers of persistent constructed using the operations appropriate to their abstraction

and then assigned to the corresponding component of a transform
'Actually. our dereferencing operators yield a conventionai Ada access

type so tbat accesses to components of large objects are not penalized by T. When completed. T is added to a set S. The set S is forced to
passing the entire object. persist by binding a persistent mnemonic string to it.

9th Annual National Conference on Ada Technology 1991 82

with Transformations; use Transformation.;
procedure Set-Builder is

T: Transforms;

type Patterns is limited private; S: Transformations. Transform.Sets. Set;

type Transform-Bodies is
record use Transform-Sets;

Match : Patterns;

Copy Patterns; begin

Re-Examine: Patterns; Begin-Session;

end record; Ne.Set (S);

procedure Touch (Assign (CDeref(T).Xatch, Pattern (...));
Code: in Persistent..HeapCommunication.Codes; Assign (CDeref(T).Copy, Pattern C...));

Within: in out Transform-Bodies); Assign (CDeref(T).Re-Examine, Pattern (...));
Add (S. T);

package Transformn.anager is new Persistent.Pointers
1anaged.Type => Transform-Bodies); Assign (CDeref (T).Match, Pattern (...));

Assign (CDeref(T).Copy, Pattern C...));
type Transforms is new Transform-Manager.Pointer; Assign (CDeref (T) .Re.Examine, Pattern C...));
package TransformSets is new Sets (Add (S, T);

Element a> Transforms,
Assign *> Assign, Name.Persistent ("name-for-the-set", S);
Equal a> ' a8,,,End.Session;

Hash => Self.Hash, Termination;
Touch *> Touch); end Set-Builder;

a) Data Types b) Building a Persistent Set of Transforms

Figure 2: Persistence across Multiple Data Types

There is no user-written code to save the transforms within Persistent Heap. these base cases are achieved by binding a user-
S or the directed graphs that comprise the patterns within those supplied mnemonic string to an object. The bound object and
transforms. Nonetheless, before control has returned from the all objects reachable from it derive persistence from the special.
End-.Session call, all of those objects will have derived persistence permanent, relation used to hold the (object,string) tuples. By
from S and will have been committed to secondary storage. simply querying that relation, the programmer can get access to the ob-
because we have bound a name to S. ject serving as the root of a larger persistent structure.

These mnemonic bindings provide only a simple, flat name
The Persistence Model. space for identifying objects, but are not expected to be em-

ployed very often. For example, a snapshot taken of the portion
The Persistent Heap hides all data storage within a transac- of the heap left on secondary storage after execution of several

aon protocol3 and all data accez within the dereferencing oper- of the author's environment tools revealed some 50,000 objects

Atgram of over 30 types, of which only 5 objects had been bound in thisAt program termination, an object on this heap is automat- manrThs5obetweeteslvseainsndals
ically written to secondary storage if it is pointed to by another manrThs5obetweeteslvseainsndals
cy itten osecoanda e if ithat provided a hierarchical directory structure for a portion of
persistent object and if the environment.

" it was newly created during this program execution, or

" it's value was altered during the program execution. The Garbage Collection Model.

Objects on secondary storage are automatically read into mem- Automatic garbage collection has strong proponents in manY
ory whenever a pointer to them is dereferenced by subsequent conventional environments, but is especially important when

program executions. dealing with large numbers of persistent objects. In part, this

Under these rules. persistence can be regarded as an induc- is because conventional rules by which a program might do its
tive property passed from one object to another via inter-object own collection (e.g.. deallocate storage upon leaving the scope
references. Like any inductive property. special base cases are where the object was declared) are often by definition inapplica-
required from which other objects can derive persistence. In the ble to persistent objects. Also. by their nature persistent objects

tend to be shared by a variety of programs. The possible addition3Programs must invoke Begin.Session prior to any use of the persistent of new programs interested in an object makes it difficult for am\
heap. and must later invoke End-Session to signal that changes to the heap
are to be committed, or Abort.Sesaion to indicate that the persistent heap one program to safely conclude that the object may be destroyed.
sthould revert to it% %tale prior to the start of the session. Adding garbage collection on top of Ada. without reference

83 9th Annual National Conference on Ada Technology 1991

to the underlying run-time system, is a challenge. Certainly, turn involve pointers, since every pointer must be visited in turn
the possibility of employing limited private types to capture all to alter the age of the referenced object. In programming directly
pointer copying is a great help, but substantial problems remain: with the Persistent Heap in Ada, we have employed a mixture of

these two approaches.
" Garbage collection is, by its nature, an operation that spans

many data types, making it difficult to implement in a
strongly typed language. Implementation

" Although Ada permits type-specific initialization code, it
does not support type-specific termination code. This raises
problems in detecting the destruction of pointers locally
allocated within some procedure activation that has since Persistence.
expired. Each object for which an in-memory persistent pointer ex-

* Given the vagaries of expression evaluation orders, func- ists is represented by a "stub". The stub contains various man-
tions may return values, containing one or more pointers, agement information and a conventional pointer (the instance
that remain on the run-time stack for a very long time. pointer) to the actual object, which is created using the conven-
Without access to the underlying run-time system, it is dif- tional Ada heap allocation mechanism. Although better perfor-
ficult to determine the useful lifetime of such references. mance could be obtained during allocation, garbage collection,
The return statement is, in effect, a form of assignment and 1/0 by implementing our own memory management, such
that cannot be captured even by limited private types. an approach would have encountered a number of problems:

We therefore settled upon a scheme for assigning "ages" to s Allowing the dereferencing operators to return conventional
objects on the Persistent Heap. Upon entry to a scope, we pointers is a major asset in run-time performance. but
call a Begin.Access routine and just prior to exiting, we call might have been impossible if we used our own memory
End.Access. Each Begin.Access/End-Access pair defines a ,y- managerment.
namic bracket of time. Objects created either locally or on the
Persistent Heap are tagged with the innermost open bracket. * Portability would have been hard to maintain in the face

The set of nested open brackets at any moment during the of differing platforms requirements for boundary alignment.
program execution defines a discrete measure of the -age" of an storage of discriminants. array dope vectors. etc.
object. Objects are immune from deallocation if they were cre- 0 Providing for the initialization of allocated values would
ated during a bracket that remains open or if they are referenced hav 'en difficult or impossible.
(directly or indirectly) by any object created during such an open
bracket. This bracketing defines an alternate to the conventional The Persistent Heap is built on top of a standard interface10

root structure. Under this scheme, there is no "permanent" ob- for object storage managers based upon a bytes/slots storage pro-
ject from which references may be traced, but there is a set of tocol. A number of storage systems can serve as implementations
objects of varying degrees of permanence. of this interface. Although we have implemented our own body

A more obvious solution than the bracketing might have been for this manager, we hope later to employ more sophisticated
to require an explicit termination operation on locally allocated object managers such as MNEME 8 . Under this interface, objects
objects upon leaving their defining scope. Such a termination are stored as a block of bytes exactly reflecting their in-memory
operation could then signal the removal of any references held value, and a set of slots, one for each persistent pointer within
by the local objects. We prefer the bracketing scheme in part the object. Each slot holds a secondary-storage inter-object ref-
because it appears to lend itself more readily to an incremental erence.
approach to garbage collection, avoiding a potentially expensive Each persistent pointer has two components. The self compo-
overhead operation upon each procedure return. More impor- nent is a conventional pointer to the stub of the object containing
tantly, however, the bracketing approach can more easily deal that persistent pointer, and the ref component is a conventional
with references returned by functions. pointer to the object being referenced. When a persistent pointer

If a function returns the value of a locally declared pointer, is dereferenced, the ref component is used to find the stub of the
and that pointer had been the only reference to an object, we referenced object. If that stub's instance pointer is null, then the
need to guarantee that the object will not be deallocated be- referenced object is not yet in memory and must be read from
fore that returned value gets used or copied into another pointer, secondary storage. As each slot is read, the corresponding pointer
There are two plausible approaches to that problem. Depend- is filled with the current location of the object referenced in that
ing upon the exact garbage collection algorithm, we might be slot (this may require creating a new stub, if the referenced ob-
able to simply not use bracketing on functions, but let the local ject is not yet in memory). Because objects are not read until a
variables created by a function inherit their age from the most pointer to them is actually dereferenced, any amount of pointer
recently active procedure or block. This works reasonably well copying, comparison, and other manipulation short of derefer-
unless we have a deeply nested series of recursive function calls, encing can take place without actually bringing the object into
in which case the amount of temporarily uncollectible garbage memory.
may become excessive. An alternative is to "protect" objects Changed persistent objects are written to secondary storage
mentioned within function return expressions by moving them as part of the End-Session processing or when the garbage col-
back one step in age, thus postponing possible deallocation of lector determines that no in-memory references to them remain.
the referenced object by one bracket. This works well except in An object's value is first written as a block of uninterpreted bytes.
the case of functions that return large arrays of elements that in Then each persistent pointer in the object is visited, converted

9th Annual National Conference on Ada Technology 1991 84

to a secondary-storage inter-object reference, and written into a environments 4 ,11,13 . Because these tools involve heavy use of a
slot. If the referenced object was created during this program variety of directed graph structures, the garbage collection and
execution and is not yet on secondary storage, then it is marked automatic linearization capabilities have proven particularly ap-
for subsequent output. propriate.

A number of existing environment tools were ported to use
Garbae Collection. the Persistent Heap, with the ported code amounting to about

20k non-comment Ada statements. The ported tools declared
A number of different implementation approaches are possi- approximately 25 persistent pointer types. The ported source

ble, given the bracketing model for garbage collection. Refer- code was over 25 percent smaller than the original (by state-
ence counting is an admissible approach, though it does not take ment count), simply because of the elimination of explicit code
full advantage of the bracketing. In a reference-counting scheme, for I/O and storage management. Furthermore, maintainance
when an object is deallocated the Touch protocol is used to send logs indicate that the eliminated code had been among the more
a "decrement-count" message to each object referenced by the trouble-prone portions of the system.
disappearing one. Perhaps more importantly, however, we find that the use

Conventional mark-and-sweep (preferably an incremental of the Persistent Heap leads to simpler design for new objects.
form) is also possible, if for each open bracket we keep a list There is less temptation to complicate a data structure with extra
of objects created during that bracket add to that list any ob- identifiers and other 'pseudo-pointers" whose primary purpose is
jects referenced by a locally declared pointer during that bracket, to facilitate I/O or otherwise to ameliorate the weaknesses asso-
To distinguish between pointers within objects on the heap and ciated with conventional access types.
pointers within objects on the stack, we define the persistent Against this must be weighed the code in terms of execution
pointer type's self component to have an initial value of some speed, executable size, and secondary store size.
dummy object created during the innermost open bracket. This
initial value is left unaltered for objects not on the Persistent Certainly one cannot add the overhead of garbage collection
Heap. For objects newly allocated on the Persistent Heap or without paying an execution time cost. Curiously. however.
read from secondary storage, the Touch protocol is employed to we find that our clock-time performance does not signi-
send a message to each pointer within the object to set its self cantly degrade and. for some programs. actually improves
component to that object's own stub (whose age is marked with when ported to the Persistent Heap. This appears to be
the innermost open bracket). a consequence of our own hardware environment's tend-

A more intriguing possibility. however, is the use of gen- ing toward being I/O and network-bound, in which case a
erational garbage collection schemes'. Under these forms of moderate amount of added CPU time goes unnoticed. Fur-
garbage collection, objects are organized into successive gener- thermore. because garbage collection reduces the amount of
ations. At periodic intervals, the most recent k generations are paging activity, a higher CPU utilization results in a lower
"condemned-. where k is a random positive integer whose dis- clock-time.
tribution tends toward lower values. Objects within condemned In other circumstances, e.g.. a CPU-bound environment
generations are retained (and possibly moved to an earlier gener- where quick real-time response is expected, our system
ation) if they are directly or indirectly referenced by any object would not fare as well. although its primary bottlenecks
from an uncondemned generation. Instead of traversing the en- are inherited from the underlying secondary storage sys-
tire collection of objects to determine those that must remain, tem (the generational garbage collection algorithm can
generational collection only "scavenges" through the condemned be configured to guarantee a fixed maximal per-operation
generations. usually a small fraction of the total store. Gen- overhead'
erational schemes are based upon the observation that objects
end to become garbage very quickly. or else khey tend to remain e Executable size is increased significantly because of our
throughout the execution. Thus objects that survive a few rounds need to generate (via Ada generics) code for dereferencing.
of garbage collection are not good candidates to become garbage assignments. etc.. for each pointer type.
in the future, and should not be examined as often. * Secondary store size tends to be large. but this is actu-Generational collection is a natural match to the bracketing ally more indicative of our particular implementation of the
of the Persistent Heap. Every time that a new bracket is opened. underlying storagemanager10. which we intend to replace
we can create one or more generations to hold the objects created
during that bracket. During the time that a bracket is open, we soon.

simply prohibit the condemnation of the generations associated
with that bracket. When the bracket closes, that prohibition is Concurrency.
removed and the associated generations may be condemned.

Providing concurrent access to the Persistent Heap introduces
further complications to garbage collection. The primary com-

Working with the Persistent Heap plication stems from the fact that simple bracketing provides a
linear measure of object "age". but but concurrent object cre-
ation requires a number of simultaneous "time lines" for object
ages.

Experience to Date. If only a single process (Ada task) is creating objects. then
the Persistent Heap need inerely keep the current -time" in a

The Persistent Heap is being employed in the develop- variable and use that variable to initialize newly allocated objects
ment of language-processing tools for the ARCADIA and TEAM on the heap and (pointers in) locally declared objects. This can

85 9th Annual Nafional Conference on Ada Technology 1991

be easily accomplished using Ada's built-in capabilities for object Interface. Technical Report COINS TR88-30, University of
initialization, and can be accomplished without making the time Massachusetts, Amherst, Massachusetts, Apr. 1988.
variable visible or accessible to the programmer.

If more toan one process is creating objects, then the time [9] 1. W. Schmidt. Some high level language constructs for data

value used for tlose objects varies depending upon the process. A of type relation. ACM Transactions on Database Systems,

simple scheme would be to initialize each object using a function 2(3):247-261, 1981.

that returns the time appropriate to the process. Unfortunately, [10] P. Tarr and C. Lin. Ada interface to an underlying storage-
Ada does not provide any means for identifying which task is cur-
rently running (i.e., responsible for the function activation). The
omission of any means of identifying tasks complicates matters [11] R. Taylor, , F. BeIz, L. Clarke, L. Osterweil, R. Selby,
tremendously. It means that a task identifier must actually be J. Wileden, A.L.Wolf, and M. Young. Foundations for the
passed as an explicit parameter to every procedure and function. arcadia environment architecture. In Proceedings of SIG-
This parameter can be used to determine the proper initialization SOFT'&88 Third Symposium on Software Development En.
of local objects. This initialization, however, must occur within vironments, pages 1-13, Nov. 1988.
a critical region if Ada's built-in initialization mechanisms are to
be employed, at must employ the Touch communication protocol [12] J. C. Wileden, A. L. Wolf, C. D. Fisher, and P. L. Tarr.

at a much higher per-procedure-activation overhead. PGRAPHITE: an experiment in persistent typed object

The combination of the need to explicitly pass task identifiers management. In Proceedings of SIGSOFT'88: Third Sym-

to each routine and to embed local object initialization within posium on Software Development Environments, pages 130-

a critical region was responsible for our conclusion that direct 142, Nov. 1988.

programming with the Persistent Heap in Ada was not practical [13] S. J. Zeil and E. C. Epp. Interpretation in a tool-fragment
for concurrent code. Instead, a pre-processor to generate the environment. In Proceedings of the Tenth International Con-
required Persistent Heap operations is required. ference on Software Engineering, pages 241-248, IEEE, Apr.

Such a pie-processor offers opportunities, however, to sim- 1988.
plify both the process of creating persistent pointers (by hiding
the generic instantiations behind a more conventional type dec-
laration) and to simplify the manipulating code (by restoring the
in-line syntax for assignment and dereferencing). The input lan-
guage for this purpose is currently under development.

REFERENCES

[1] M. Atkinson. K. Chisholm, and P. Cockshott. PS-algol:
an Algol with a persistent heap. ACM SIGPLAN Notices.,
17(7):24-31, July 1982.

[2] M. P. Atkinson. P. J. Bailey, K. J. Chisholm, P. W. Cock-
shortw and R. Morrison. An approach to persistent program-
ming. The Computer Journal, 26(4):360-365, Nov. 1983.

[3] M. P. Atkinson and 0. P. Buneman. Types and persistence
in database programming languages. Computing Surveys,
19(2):105-190. June 1987.

[4] L. A. Clarke. D. J. Richardson. and S. J. Zeil. TEAM: a
support environment for testing, evaluation, and analysis. In
Proceedings of SIGSOFT'88: Third Symposium on Software
Derelopnent Entironments, pages 153-162, Nov. 1988.

[5] Dept. of Defense, Ada Joint Program Office. Reference Man-
u l for the Ada Programming Language. Government Print-
ing Office. 1983. ANSI/MIL-STD-1815A.

[6] D. Heimbigner, L. Osterweil. and S. Sutton. APPL/A: A
Language for Managing Relations among Softuare Objects
and Processes. Technical Report CU-CS-375-87, University Steven Zeil received his Ph.D. in 1981 from the Ohio
of Colorado. Department of Computer Science. 1987. State University Department of Computer and Informa-

[7] H. Lieberman and C. Hewitt. A real-time garbage collector tion Science. He is currently an Associate Professor in

based on the lifetimes of objects. Communications of the the Computer Science Department at Old Dominion Uni-

AcM. 26(6):419-429. June 1983. versity. His research interests are software testing and
software development environments. Inquiries regarding

[8] J. E. Moss and S. Sinofsky. Managing Persistent Data with this paper may be sent to him at there or by internet to
.llnem: Issues and Application of a Reliable. Shared Object zeilcs.odu.edu.

9th Annual National Conference on Ada Technology 1991 86

ANALYSIS OF SOFTWARE REUSE

ON AFATDS CONCEPT EVALUATION

by C. Alan Burnham, Robert D. Gerardi, Peter Ho, and Dr. Harry F. Joiner II

Telos Corporation
55 North Gilbert Street, Shrewsbury, NJ 07702

Inrductoon Design Approach

The reuse of software, particularly on large Ada projects, The development strategy included a number of elements to
has received significant attention recently. This study increase software reuse. A primary factor from the
analyzes the Advanced Field Artillery Tactical Data System beginning was a conscious effort by the system design team
(AFATDS) Concept Evaluation Phase (CEP) software for to establish an architecture that fostered reuse and identify
reuse of code and discusses how the design of the system potential internal reuse candidates. This software execution
implemented a reuse strategy. environment organizes the common execution elements into

16 Process Libraries (PLs) and 26 User Libraries (ULs) for
The AFATDS CEP software is composed of eight development. Some of the design techniques were standard,
independent Application Program Units (APUs), or separate such as isolating the support functions associated with the
applications: operating system, communications support, and data

management. Other common functions were identified as
" Movement Control Tactical Operations application-type functions and grouped together. This

(MCTACP) design effort clearly distinguished between the role of a
" Movement Control Fire Support Control software component during the development effort and the

(MCFSC.P) role that component plays during execution.
" Status Functions (SF_PROC)
" Fire Support Planning (FSP_PROC) The AFATDS Project Library General Compilation Guide
" Fire Support Execution, Fire Support Control (APLGCG) is illustrated in Figure 1. The APLGCG

(FSXFSCP) provides a network diagram that shows the order of
" Fire Support Execution, Tactical Operations compilation for the ULs, PLs, and APU command files.

(FSXTAC.P) Each of the UL command files is represented by a
" Fire Support Execution, Target Processing rectangular block in the APLGCG. The PLs and APU

(FSXTGPP) components are shown as rounded blocks. The compilation
" Data Base Display Function (DBDF_PROC) order also indicated the dependencies at a library level.

Each of the APUs is a stand-alone system when loaded into At each stage of the design and development work, the team
the hardware, and no separate APUs can be loaded leaders met weekly to discuss details of their teams' current
simultaneously on the same hardware unit. In essence, work for the purpose of identifying common software.
AFATDS is not a system, but eight systems that were When a part was identified as a requirement by more than
developed together to support the field artillery command one team, the software was developed to satisfy the needs of
and control functions. This joint development represents the all of the teams that were expected to use that capability. The
first aspect of the reuse strategy. emphasis at this point was on minimizing the development of

unique code. Some additional effort was normally required
For the purpose of this paper, software reuse will be to make the software usable by more than one APU;
measured by the lines of code that the APUs have in however, this effort was clearly compensated for by the
common at the module level. Although no less important for amount of reuse achieved.
the effort, the reuse of design and other software elements
were not measured independently. Initially, the use of Ada generics was hampered by compiler

performance. This restricted the use of a major Ada reuse
The software for the AFATDS CEP was developed by feature. The developer compensated for this compiler
Magnavox Electronic Systems Company. This study is a problem by limiting the use of generics during the early
part of an extensive source code analysis [1, 2, 3) development. The later development included extensive use
commissioned by the Office of the Project Manager, Field of generics.
Artillery Tactical Data Systems (PM, FATDS) and
performed through the U.S. Army Communications- Manaing for Reuse
Electronics Command (CECOM), Center for Software
Engineering (CSE) under U.S. Army Contract Number The extensive reuse required careful planning by the
DAABO7-87-C-B015. developer for configuration management and compilation,

87 9th Annual National Conference on Ada Technology 1991

AFATDS PROJECT LIBRARY GENERAL COMPILATION GUIDE

ium"Af wERINW. 432

.imm ~ ~ ~ _m MKa u.mm *.c

mm tp~

7~N VAN" N 0PN

NOT!:w NETWORK PLOWc IS EFTTO

9t AnulNaioa Coferenc on Ada ecnlogyw 19918

The project maintained thorough configuration control of Table 1. SIZER Lines of Code (LOC) Counts for
ruse components, even though the corporate reuse group the User Libraries
supported the reuse library. Multiple versions of the same
reuse components could be used by the project if the SIZER LOC Count
configuMaion coitrl is outside the project level. TSC NCNB C R

The development management must establish a meaningful USER LIBRARIES
and realistic reuse plan as part of the software development CIUSER 1421 4111 9472
plan. Strong management leadership and commitment were CS_USER 16904 37436 81059
necessary to overcome the resistance of the developers. The DBDF_-USER 401 1243 4048
managers insisted on reuse and inspected for it. Other key DBDUSER 6121 9045 10743
factors were management's acceptance of the resonsibility DMUSER 9639 29622 82586
when problems arose due to reuse and their willingness to FSPIUSER 1899 3606 9821
improve the reuse software. The descriptions used for FSP2_USER 792 4979 6430
selection of reuse components had to be precise and FSXI_USER 925 2243 4538
accurate. FSX2_JSER 1170 2840 6374

Confidence in reuse components is difficult to establish, but FSX3USER 2919 9965 22047
is easy to destroy. Designers and programmers resisted the FSX4USER 1921 5717 13730
reuse of software, suggesting that they could develop the HI_USER 3073 9162 20671
needed capabilities faster and with greater efficiency MCUSER 502 1086 2902
themselves. The individual developers would not accept MC-USER32 698 1449 3892
shortcomings in the reuse components that they would MMI_USER 571 1593 4596
overlook in their own software components, underscoring MM2_USER 8877 21575 48128
the need for management intervention. They easily MMFSPUSER 7617 23911 46638
recognized the value of the reuse of complete subsystems MMFSXUSER 10129 31096 61147
and large scale fragments, but had more trouble accepting the MM_MC_USER 1169 2873 4884
need for small component reuse. OSUSER 7316 14435 34640

Anall-t of Source Code for Reuge PS_USER 954 2235 5670
REUSEUSER 3923 8122 24534

The analysis was performed on Version E7 of the CEP SFIJUSER 2281 6401 14279
software as delivered to the Government by the developer. SF2_USER 3150 8306 13898
The tape contained both the source code files and the VAX SMUSER 420 935 3041
command files that are used to build the APUs. The more TOTAL 94792 243986 539768
than 8,000 files were combined into two master directories.
Lists of the source code files associated with each block of
the APLGCG were created from the appropriate command Table 2. SIZER LOC Counts for the Process
files. The PL and UL blocks that are reused in all of the Libraries
APUs are collectively referred to as the "APUCOM."

The source code was measured using SIZER, a tool SIZER LOC Count

developed by TELOS to measure the number of lines of code TSC NCNB C R
(LOC) in one or more files of Ada code. Three different PROCESS LIBRARIES
LOC measures were made: terminal semicolons (TSC); CI MX PROC 9652 24468 44954
noncomment, nonblank lines (NCNB); and carriage returns CI_..PROC 16886 41649 80518
(CR). SIZER was executed to count the LOC for each of the CSPROC 14229 34552 68736
UL, PL, and APU component files in the APLGCG. The DBLOADERDUMPER 61820 152269 205944
results for APUCOM and each of the complete PLs were DMPROC 19926 61193 159110
tabulated. DMPROCSING_PROC 1444 3366 7826

FSX..ASA..PROC 11966 38612 72769
Tables 1, 2, and 3 provide the LOC measures for each of the FSX.CaM.PROC 37351 118162 241056
component ULs, PLs, and APUs, respectively. The FSX SUPER Q 228 592 1320
cumulative totals for the PLs, APUCOM, and the APUs are
provided in Table 4. In Table 5, the percent of reuse in each HI.PROC 29627 84996 186323
of the APUs is presented in two ways: the percent of the MM-PROC 971 1531 2231
APU that consists of APUCOM and the percent of the APU MPPROC 8365 23719 50184
that is used by at least one other APU. TSC was used to OSPROC 26527 56195 129916
determine these percentages. One of the APUs OS.EXTRA 1051 2066 2560
(FSXTGP_P) is, in fact, a subsystem of FSX_FSCP and PSPROC 969 2153 4105
FSXTACP and thus consists entirely of reused code. SMPROC 19492 45831 112947
Approximately 43 percent of the total amount of code used in TARGETEDITOR 1352 3210 5419
the eight APUs was developed because of the internal reuse TEXT TOACU 1835 6809 15487
efforts on AFATDS. TOTAL 263691 701373 1391405

89 9th Annual National Conference on Ada Technology 1991

Table 3. SIZER LOC Counts for the APU Table 5. Percentage of Reuse Based on APUCOM
Components and All Reused Libraries.

SIZER LOC Count APUCOM Total Reuse
TSC NCNB C R Percent

APU COMPONFENTS A~

DBDFPROC 6617 19465 50756 DBDF_PROC 94% 94%
FSP_-PROC 99595 280901 361781
FSXFSC_PROC 146 613 1016 FSPPROC 31% 68%
FSXTACPROC 135 516 875 FSXFSCPROC 62% 100%
FSXTGPPROC 6389 19539 38009 FSX_TAC_PROC 62% 100%
MCFSCPROC 8876 25226 62393 FSX_TGPPROC 68% 95%
MCTACPROC 15720 44663 108892 MCFSCPROC 90% 92%
SFPROC 19266 58720 109013 MCJFC.PROC 90% 92%

TOTAL 156744 449643 932735 MCJACROC 84% 86%
SFPROC 83% 83%

Table 4. Cumulative LOC for the Process Additional Reuse Efforts

Libraries and the APUs Besides the reuse of software within the AFATDS program,

SIZER LOC Count Magnavox has reused substantial parts of the AFATDS CEP

TSC NCNB C R design and code on two other projects [4]: the Elevated
Target Acquisition System (ETAS) Central Processor and

PROCESS LIBRARIES the Navy Force Fusion System (FFS) Command and
CLMXPROC 91244 233793 500266 Control prototype. On ETAS, Magnavox reused code (over
CIPROC 81592 209325 455312 150,000 out of 165,000 LOC), architecture and design,
CS_PROC 57194 128905 278007 documentation, standards, and development environment.
DB_.LOADERDUMPER 159578 419724 574299 The FFS project was supported by the STARS program as a
DMPROC 30804 113372 300870 reuse demonstration and achieved over 93 percent reuse on
DMPROCSINGPROC 49152 154174 390755 more than 200,000 LOC [5]. The productivity on these
FSX.ASAPROC 147492 411078 875369 projects proved the value of large scale reuse even more

FSXCOMPROC 135526 372466 802600 clearly.

FSX_.SUPERQ 113730 411650 876689 References
HI-PROC 43939 116715 266168
MM_PROC 65677 168207 377025 [1] H. F. Joiner. "Metrics Analysis of Ada Programming
MPPROC 105040 275371 599346 Practices on AFATDS - a Large Ada Project," 43rd
OSPROC 26527 56195 129916 AFCEA International Convention. June 1989.
OS_EXTRA 8367 16491 37200
PSPROC 44888 98741 219046 [2] C. A. Burnham, P. N. Ho, and H. F. Joiner.
SMPROC 84198 213507 487741 "Techniques for the Analysis of Portability - a Study
TARGETEDITOR 12591 25773 64593 of the AFATDS Concept Evaluation Code," Eighth
TEXTTOACU 45342 122471 280271 Annual National Conference on Ada Technology.

March 1990.

APU COMPONENTS [3] P. N. Ho. Reuse Study on AFATDS Aplicatipn

DBDF PROC 102871 268052 598570 P. TCFM 89-5908 13 November 1989.

FSP._PROC 308043 662976 1829663 [4] R. Lawson. "Ada Reuse - Results and Issues,"
FSXFSC_PROC 154027 331230 914394 Development of Large Software Systems in Ada. 12
FSXTACPROC 154016 331746 915269 July 1990.
FSXTGP_PROC 141915 392005 840609
MCFSCPROC 107499 279221 621885 [5] H. F. Joiner. "Economic Analysis of Software
MCTACPROC 114343 298658 668384 Reuse," Eighth Annual National Conference on Ada
SFPROC 115520 307307 656827 Technology. March 1990.

TOTAL 1198234 2871195 7045601

Biographie

APUCOM TOTAL 96254 248587 547814 C. Alan Burnham is a Senior Systems Engineer with TELOS

at Fort Monmouth, NJ. He is currently the Technical Task
TOTAL ALL CODE 515227 1395002 2863908 Leader for Ada Engineering Support.
SUM OF APUs 1198234 2871195 7045601

Mr. Burnham has worked over 20 years in the development
CODE DEVELOPED (%) 43% 49% 41% and support of software-intensive military systems. He has

performed software development, software quality

9th Annual National Conference on Ada Technology 1991 90

evaluation, systems analysis/engineering, software areas of interest are CASE tools, Software Reverse
acquisition management, and program management. Engineering Technology, Ada Software Reuse Technology,
Mr. Bumham's recent experience has been primarily in and large-scale software metric analysis.
developing specifications, defining requiremens, and testing
software for mission-critical defense systems. His earlier Mr. Ho received his BA in Mathematics from Lincoln
experience was in the development, validation, and University, MS in Mathematics from Lehigh University, and
application of large-scale, high-resolution combat MSE in Computer and Information Science from University
iultios. of Pennsylvania. Mr. Ho has over 10 years of experience in

the development of software for both Government and
Mr. Burnham received his BA in Mathematics from commeriial applications.
Augustana College.

Harry F. Joiner joined TELOS as a Software Engineer in
Robert D. Gerardi is a Systems Engineer with TELOS at August 1986, working on the Firefinder field artillery
Fort Monmouth, NJ. He is currently the support engineer location radar. He assumed his current position as Manager
for Ada Engineering Support. His main areas of interest are of Software Metrics in March 1988. TELOS is the largest
PC to PC and PC to mainframe communication links, Ada software engineering support contractor to CECOM CSE.
software metric and source code analysis, and PC system
support. Before joining TELOS, Dr. Joiner served as a consultant on

project management and digital signal processing to various
Mr. Gerardi received his BA in Computer Science from oil companies. He has over 20 years of experience in
Central Connecticut State University and is currently mathematical modeling, digital signal processing.
pursuing his MA in Computer Science from Monmouth engineering, and project management.
College. Mr. Gerardi has over 5 years experience in the
development and support of PC systems and communication Dr. Joiner has a BA in Mathematics and Chemistry and an
links. MS and Ph.D. in Mathematics. He has served on the

faculties of the University of Massachusetts and Texas
Peter N. Ho is a Senior Software Engineer in the Advanced Christian University.
Software Technology group of Telos Corporation. His main

91 9th Annual National Conference on Ada Technology 1991

A METHODOLOGY FOR THE EVALUATION OF REUSABLE
ADA SOFTWARE LIBRARIES

Stephen H. Levy
Calculemics, Inc.

100 Willoughby Rd.
Fanwood, NJ 07023

(201) 322-4517

1. Abstract library for adoption in system

This paper presents a methodology for development. In this paper, we provide a
evaluating reusable Ada software set of criteria for evaluating reusable Ada
libraries. It identifies a set of criteria software libraries and a methodology that
and analyzes how to apply them. Three uses them. The methodology is flexible
estimated quantities and two metrics are and encourages, indeed requires, you to
defined. The quantities are the degrees customize or tailor it to your company
of criterion satisfaction, importance, and goals, requirements, and capabilities.
certainty. One of the metrics is intuitive The criteria may be divided into five
and in different incarnations is widely broad areas: 1) Reliability, 2)
followed; the other is based on notions of Functionality, 3) Software Engineering,
fizzy set theory and merits a larger 4) Vendor Support, and 5) Cost
following. The methodology is flexible Effectiveness. The criteria are
and encourages adaptation to local
requirements and capabilities. • Reliability,

KEYWORDS: Abstract Data Types, Popularity,

Code Complexity, Cost Effectiveness, • Security,
Cost Model, Domain Analysis, Domain * Software Testing,
Coverage, Fault Tolerance, Generic
Units, Object-Oriented Design, Package • Functionality,
Cohesion, Performance, Portability, * Application Domain Coverage,
Reusability, Security, Software
Components, Software Libraries, • Abstract Data Type Coverage,
Software Metrics, Software Repository, e Mathematical Coverage,
Software Testing. • Graphics Coverage,

2. Introduction * Software Engineering,

In recent years, as budgets have shrunk * Customizability,
and demands on software have grown,
interest in software reuse has spread • Fault Tolerance,
throughout the Ada community. With • Code Simplicity,
this interest has come recognition of the
many challenging issues involved in * Package Cohesion,
implementing an effective software reuse * Code Portability,
program. [2,3] One of these issues is
how to evaluate a reusable Ada software

9th Annual National Conference on Ada Technology 199) 92

Platform Compatibility, Many of the criteria that make good

* Vendor Support, reusable software make good software in

" Doc tion Q , general. However, the two do not
always coincide - sometimes, in fact,

" Performance, they conflict. Further, even some of the

" Enhancement Rate, criteria that enhance software reusability
may conflict among themselves.

* Tool Support, Few, if any, of the criteria listed are

* Maintenance, and sharply defined. If they were, evaluation

* Cost Effectiveness. of reusable Ada libraries would be easy,
For each criterion, three measures are but it's not. Some considerations in

defined: the criterion rating itself, its applying a criterion may easily be
importance, and its certainty. All are interpreted as falling under another
estimates based on research into the criterion differently conceived. Indeed,
reusable Ada library. Certainty is often grouping the considerations differently
ignored but just as significant as the other may construct a different set of criteria.
two. To handle the problem, you must

carefully keep in mind the considerations
To promote ready comparison between used to determine the satisfaction of each
different libraries, two Reusable Ada criterion.
Software Library Evaluation (RASLE)
metrics are also defined. Calculation of Software Testing. Like the reliability of
one is quite intuitive, that of the other software in general, the reliability of a
less so because it draws on concepts from library depends on extensive testfuzz se thory.(Ifyouwoul lie acoverage. Many libraries provide a suitefuzzy set theory. (If you would like a of tests used to test the software
copy of an Ada program that computes optets use tortes thethese metrics given a set of values for the components. Ideally, during the
evaluative criteria, please send a self- evaluation process, you would like to runealuaves erelop ae snd a 5 1/4 high the tests yourself, examine the tests foraddressed envelope ad coverage and validity, and add your own
density diskette to the author.) tests to the test suite. Do the tests
3. Criteria for Evaluation of Reusable adequately cover the range of valid and

3 a ofore Eaaio es ae invalid input values? Do they let you test
for a variety of sequences of inputs? Can

In this section, we describe each you see the test results?
criterion, explain its justification, andexamine ways to measure it. After Popularity Here we read the literature
careful evaluation, each criterion is and talk to associates whose judgment we
assigned an integer value in the suggested respect. Have many other companies
range 0..4. You can certainly use a usdthe if com pon e wt
different range of values, but more values satisfaction? Of course, a piece of
requires a finer sense of discrimination popular software may not be what you
than is likely regarding the application of want. In this regard, a healthythe ritria o prticlar reusbleskepticism is a faithful friend.
the criteria to particular reusable Nonetheless, the criterion is valuable
libraries. The lower limit is 0 to simplify beca popularity is often justified.calculations. eas ouaiy sotnjsiid

Note, too, that with reusable Ada

93 9th Annual National Conference on Ado Technology 1991

software libraries, determining popularity thorough domain analysis is not
may be difficult because many companies attempted. Care should be exercised that
are new to offering reusable Ada areas of overlap among criteria not
software, and most companies (alas...) inflate the measures for them.
are still slow to reuse it. Abstract Data Type Coverage. Several

The age of the company and its software reusable Ada libraries cover this area in
library may themselves be considered in varying degrees. Perhaps, a library that
assessing satisfaction of this criterion, has small coverage may be exactly what
Mere age may not indicate widespread you want. Discuss with your software
popularity, but it does suggest that some engineers what your potential
have found the company's products applications require: lists, queues,
(even, perhaps, the software you're stacks, strings, trees, networks, or
evaluating!) worthwhile. others? What operations will your

Security or Library Integrity. In applications need for a given data type?

choosing software from a library, we Are they among those in the library? If

trust that the delivered software is what not, can you build them readily from

its developers and distributors believe it those provided? Also, for the operations

to be. We would not be pleased to you want, are there different
know, for instance, that the software had implementations based on the
been accidentally or maliciously changed subprogram's usage of time and space?

bee acidetaly r mlicouly hanedWatch potential overlap with the
so that bugs were introduced or, worse,

that a virus of some sort lurked within it. performance criterion below.

It is difficult to assess the satisfaction of Mathematical Coverage. As with other
this security criterion, especially before coverage criteria, we must determine
delivery as we'd like. In view of a what percentage of functions needed are
number of disconcerting incidents that in the library under evaluation. Many
have been publicized in recent years, it common operations are available in
appears that, other things being equal, several libraries. These include
accessibility to the library via a public trigonometric functions, matrix
network would tend to lower the operations, Gaussian linear equation
satisfaction rating of this criterion, solvers, numeric integration, statistics,
However, if you can later scan the Newton function solvers, differential
delivered software with your trusted equations, and special functions. Not all
virus detection program, you may be able of these are found in a library even if it
to raise the rating. concentrates on mathematical routines in

Domain Coverage. The extent to which Ada. Different versions of the same
the library implements the algorithms functions varying by efficiency or
specific to your application domain may accuracy should be considered.
be crucial. In the Intelligence/Electonic Graphics Coverage. Consider whether
Warfare (IEW) domain, for instance, your application must directly call low-
Fast Fourier Transforms, Polar/Cartesian level routines (draw lines, set pixels,
conversions, and azimuth determination draw circles, for instance) or higher level
algorithms, among others, will often be routines that provide icons, windows,
significant. A list of relevant algorithms menus, forms, etc. Different reusable
should be constructed, if indeed a more Ada libraries focus on different levels.

9th Annual National Conference on Ada Technology 1991 94

For portability, note whether the libraries average length should be quite less.
claim to implement graphics standards Further, are ifs, case statements, loops,
(whether formal or de facto) such as blocks, or program units often nested to
PHIGS and X-Windows. In this area more than two or three levels? If
more than others, coverage is dictated by McCabe, Halsted or other metrics are
the asssociated hardware (graphics board, available, they may be helpful.
terminal), compiler, and host and target Otherwise, you can study code samples,
machines. Some Ada graphics libraries if possible. The greater the complexity,
may not compile under certain compilers the lower the rating for this criterion.
or performance of the code may suffer. Package Cohesion This feature makes it
Customization/Extensibility. No matter easier to find and integrate the code you
how good a library is, you may want to need. Some facets may promote object-
customize some routines. As a rough oriented design. Are subprograms that
guide, the greater percentage of operate on the same class of objects
subprograms (or the packages containing grouped together in the same package?
them) that are generics, the better. For Do packages typically depend on (with) a
instantiation, can you define your own small number of other packages? Are
types (your own Complex number type, derived types used so that new classes of
for instance) or must you use those objects can inherit the operations of their
supplied by the library packages parent types? Are related generic
themselves? How easily can you modify packages (e.g., operating on different
or enhance the subprograms? Do they kinds of matrices) nested in the same
use local variables or (more difficult, package? Nesting may be appropriate,
though often necessary) non-local ones despite potentially greater complexity.
accessed by many subprograms? Code Portability. Code portability is

Fault Tolerance How well do the library closely related to reusability, but it is not
routines use Ada's exception handling the same thing. If a large module of code
facility? Are exceptions defined where (say, a CSCI) is portable, its components
necessary or are the predefined Ada may not be reusable if they cannot be
exceptions sufficient? Predefined readily separated from their original
exceptions may be sufficient for many application. (To some degree, it is also
mathematical routines, but with abstract the opposite of the compatibility
data types, for instance, exceptions are criterion.) This measure requires that
often needed to handle things that can go there be little, if any, use of
wrong. Propagating a newly defined implementation-dependent features from
exception instead of a predefined one can Chapter 13, I/O, or elsewhere: address
more easily identify the source of a clauses, pragmas, unchecked conversion
problem. Are handlers provided where and deallocation, 1/0 FORM parameter,
necessary, or do they obstruct your etc. In general, it also demands, for
application code from handling them? instance, frequent use of programmer-

Code Simplicity (Low Complexity) To defined (not predefined) numeric types
modify reusable code, we do not want it and constants, not literals, in the code.
to be complex. The maximum To a large extent, measuring the
subprogram length should not exceed 100 satisfaction of this criterion could be
lines or so (two or three pages), and the automated.

95 9th Annual National Conference on Ada Technology 1991

Platform Compatibilty. We must note Enhancement Rate. Past enhancements
that the reusable code will work on our may be a key to future positive
prospective system, not another one. developments. Is the vendor planning to
Does the library use some routines 0ow- add routines to the library, in the same or
level math routines, for instance) written a different domain? Is a new version for
in FORTRAN, C, or another language? another compiler/host/target in the
Do we have a compiler for it? Do the works? But this may not be so important
library subprograms compile under our if the product is already more than what
compiler? (Compiler validation is no you want.
guarantee.) If so, do they run as Tool Support. This may be necessary
efficiently on our system as they do on only when the library is large, or
others? Different array storage layouts generics are deeply nested or have many
can affect execution speed. parameters. Some tools may assist in

Documentation Quality. Here we finding the component you need, or in
should consider the clarity, building it through instantiations. Are
comprehensiveness, and organization of packages named informatively? Is the
the documentation; the quality and library organized? Some graphics
placement of comments in the code; the libraries assist you in prototyping the
informativeness of variable names; and man/machine interface for your
the ease of access of specific topics. Are application and then generate Ada code
there indexes as well as tables of contents to integrate with your application.
for each document? Are the limitations Maintenance. We all need support now
on the algorithms explained or and then. Can you easily obtain all the
referenced? Are diagrams (hierarchy documentation you need? Is a
charts, data flow diagrams, etc.) maintenance agreement provided? Is
adequate? Is the documentation available there a warranty of any kind? This is
electronically as well as in hard-copy? It rare. When you call, can you readily
is sometimes difficult to obtain an speak with a knowledgeable technical
evaluation copy of the library's person? Is there more than one person
documentation, but some vendors will who can answer your questions?
freely provide portions of the
documentation or a complete set if a Cost Effectiveness. Only a careful cost
non-disclosure agreement is signed. analysis can adequately answer this
Performance Data. Is there question. (See [5] for a thoughtful
performance data .tutne approach.) A preliminary assessment,performance data on the library routines however, is appropriate. What is the

as run on your machine? If not, is a suite library's cost? Some have a fixed cost,

of performance tests provided? Tests for others a renewable license fee. Pricesfunctionality are common, but forma vry codigtwhhe te
perfrmane masurmentnot Canyoumay vary according to whether the

performance measurement not. Can you license is for one CPU, all those at a site,
sample the code and write your own or the entire company. To be optimistic,
tests? Especially with matrix prices may drop as reuse catches on.
manipulation routines, this may be (Little analysis has focused on what
important. There may also be some reusable software should cost. [1]) Can
penalty from object-based techniques. you purchase just what you need, or must

you purchase a whole suite of packages?

9th Annual National Conference on Ada Technology 1991 96

What are maintenance costs? satisfaction are accurate.
The measures of importance and

4. 7Wo Measuresfor Evaluatng certainty should be determined initially
Reusable Ada Libraries and periodically revisited throughout the

Associated with each criterion are two evaluation process. Just as your
measures used to construct the reusable measures of certainty change as you learn
software library evaluation metrics. One more about the reusable libraries under
is for criterion importance, the other for review, so may your measures of
criterion certainty. importance as you learn more about the

Importance is the degree of urgency you system(s) under development.

attach to the satisfaction of a criterion. 5. Awo Metricsfor Evaluating Reusable
The more you can do without satisfaction Ada Libraries
of the criterion, the less important it is.
Importance is measured by an integer in To determine the intuitive RASLE1
the range 0. .3. metric:

The importance measures that you attach * Multiply each criterion measure by
to criteria are not absolute. In many its associated importance measure
cases, they should vary according to * Total up all the products so derived
several factors, notably the
characteristics of the system being This metric is similar to a statistical
developed, the prospects for later porting weighted average or expected value, but
to another hardware platform, the it is not divided by the total of the
Software Engineering Environment in importance measures.
which development occurs, the calibre of
your software development staff, and The RASLE2 metric uses comparable
other factors. operations in fuzzy set theory, namely

the union, intersection, and complement
Certainty is the measure of justifiable of two fuzzy sets. [4,6,7] The union of
assurance or credence that the numeric two fuzzy sets is the maximum of the
measure you assign a specific criterion values in the sets. The intersection is the
(whatever its value) is indeed accurate. minimum of the values. The complement
By their very nature, the values assigned of a value is the highest possible value
to the evaluative criteria are subject to minus the given value. Briefly, the steps
error or inaccuracy because of are:
misunderstanding, inadequacy of
available information, etc. Sometimes, 9 Compute the union of each criterion
you can review code and documentation measure with the complement of its
samples before purchase, if you sign a importance.
non-disclosure agreement. * Determine the intersection of all the

To mark its probabilistic nature, certainty library's unions so derived.
is given a value in the range 0..100.
Roughly, we can expect that the more The two RASLE metrics give comparable
research effort spent on investigating a results. To ensure validity in your
reusable library, the more certain we can results, we recommend you use both.
be that our evaluations for criteria

97 9th Annual National Conference on Ada Technology 1991

To determine a certainty measure for the significant savings in the intermediate
library as a whole, the individual and long term makes the effort seem well
certainty measures are treated like the worth it. A comparative cost analysis
criteria values. Together, either RASLE with the reusable libraries scoring highest
metric and its associated certainty metric in a given class, and made in light of a
(RASLECI or RASLEC2) form a number of projected systems, should go
composite tool for evaluating reusable far toward answering the question.
libraries. Finally, note that many of the criteria

Like all metrics, the RASLE metrics for presented here may also be used to
the libraries under consideration must be provide guideposts and standards to
used carefully. The metrics provide a follow in writing reusable software
tool for your buy or build decision - afresh or in modifying current software
they do not determine it. The metrics of to make it more reusable. That, however,
libraries offering comparable domain is another topic.
coverage should be compared, and cost
analyses with those libraries having high 7. Acknowledgments
ratings should be made. This methodology has been used in

support of the work of the U.S. Army
6. Summary and Conclusions Communication and Electronics
The methodology presented here requires Command (CECOM)'s Center for IEW
that you thoughtfully and carefully (Intelligence/Electronic Warfare)

Systems Working Group on Reusable
Determine the degrees of importance Software. The writer would like to thank
you attach to all the criteria the members of this working group -

" Assess the degree to which each especially Cenap Dada (Working Group
criterion is satisfied for each library Chair), Jim Iverson, Jerry Brown (all of
under review CECOM), and Dan Berube ofCOMCON, Inc. - as well as John

" Evaluate the uncertainty attaching to M N an B ac a (oho
your ratings of each criterion for that Medea and Bob Marchand (both of
library for each library under review discussions.

" Calculate the software metrics
evaluating the reusable software 8. References
libraries 1. Aharonian, G. "Pricing a Reusable
Compare the software metrics of two Software Package," Defense
or more reusable libraries that share Computing, Nov/Dec, 1989.
strong ratings in an area of coverage 2. Booch, G. Software Components
of special interest with Ada, Benjamin/Cummings,

Doing this well requires that you spend Redwood City, CA, 1987.
time, money, and research - elements to 3. Braun C., Goodenough, J., and
be included in the cost modelling that Eanes, R. Ada Reusability
you perform for introducing and Guidelines, Technical Report,
maintaining a software reuse program in SofTech, Inc., Waltham, MA,
your company. Yet, the promise of 1985.

9th Annual National Conference on Ada Technology 1991 98

4. Caudill, M. 'Using Neural Nets,
Part 2: Fuzzy Decisions,* Al
Expert, April, 1990.

5. Gaffney, J. 'An Economic
Foundation for Software Reuse',
Software Productivity Consortium,
VA, July, 1989.

6. Yager, R. 'Concepts, Theory, and
Techniques: A New Methodology
for Ordinal Multiobjective
Decisions Based on Fuzzy Sets,"
Decision Sciences, 12(4) October,
1981.

7. Zadeh, L. 'Fuzzy Sets,'
Information and Control, 8, 1965.

9. About the Author

Stephen H. Levy is a computer scientist
and president of Calculemics, Inc., a
firm specializing in computer research,
development, and training. His clients
include U.S. Army CECOM's Center for
Software Engineering, AT&T Bell
Laboratories, Sofrech, Inc., UNIX Pros,
Inc., and others. He earned a Ph.D. in
the philosophy of mathematics and logic
at Fordham University, and is the author
of Ada: The Fortran Programmer's
Companion, Silicon Press/Prentice-Hall
International, 1991. Dr. Levy's research
interests include software engineering,
programming languages, mathematical
applications, and logic and reasoning.

99 9th Annual National Conference on Ada Technology 1991

FACILITATING REUSE IN A SOFTWARE ENGINEERING ENVIRONMENT

John C. Schettino, Jr.
Catherine S. Kozlowski

Contel Technology Center, Contel Federal Systems

Abstract: There are a number of problems with design and implementation have incorporated a large
library-based reuse methods. Technical issues amount of reuse into the process of analysis, design, and
such as ease of creation, maintenance, and implementation of software systems, but not as much as
enrichment of the library, as well as the resistance in the development of hardware systems. Current "every
of software engineers to reuse programs, impede day" reuse in software includes the use of operating
the success of reuse efforts. Additional systems, standard languages (and their supporting low-
procedures and methods must be instituted in level libraries) and standard mathematics libraries. The
order for a reuse program to succeed. The value widespread reuse of the work products of past efforts,
of the reuse program must be measurable. For even within an organization, is still an unrealized goal.
these reasons, stand-alone reuse library systems These work products represent a large investment in
provide only a partial solution to reuse efforts. The effort and money, which could be used to speed future
integration of a reuse library system into an development of similar systems, improve quality by use
Integrated Process Support Environment (IPSE) of refined and tested building blocks, and free software
which provides process control is one method of developers from the constant re-implementation of
providing a more complete solution. The solutions.
information and process control provided in an
IPSE complements the functions provided by
reuse libraries, creating an environment which Reuse today
supports and encourages reuse. Large organizations have realized the value of reuse,

and have attempted to implement procedures, create
tools, and prescribe processes to encourage and

What Is reuse? increase reuse in their software development efforts. A
common approach is to create a manual or computer

There are a number of work products created during based software component library, and a software
the lifecycle of a single software system. These work development process which includes reuse activities.
products traditionally are conceived and realized without The library includes a classification system which
regard for previous efforts which may partially or identifies the types and uses of the components, and a
completely solve the problem at hand. In the distant past, method or tool for locating and retrieving desired
all software and hardware development was performed components. Raytheon' and NEC 2 have successfully
this way. Every solution to a problem was a unique instituted reuse programs which address common
invention, different from all others. Contrast this early business applications code within existing application
state of the art with today's hardware engineering domains. This limited approach to reuse simplifies the
environment, where designers are taught methods for requirements of the classification and retrieval systems,
selecting and combining reusable building blocks of since the domain is limited and somewhat static. These
components in order to design and implement new or systems do not readily address the classification of new
improved systems. Building blocks have standard, modules or domains which fall outsioe of the established
documented interfaces, and are readily available from a classification hierarchy. Other organizations, such as
number of sources. Designers are taught to consider Fujitsu3 and the Army's RAPID Center 4, approach reuse
existing building blocks when analyzing and specifying more pragmatically, mandating that all software projects
new systems, and generally do not implement brand- formally include the reuse organization within their
new components to complete a system. The creation of development cycle. The reuse organization is modeled
new building blocks has become a separate industry, after a regular library, with a staff of systems analysts,
with different skills required. Current methods of software software engineers, reuse experts, and domain experts

9th Annual National Conference on Adc Technology 1991 100

required to support its functions. This represents a use will act as a disincentive to the primary users of the
significant investment in reuse, and off-loads the system. An approach which is difficult to administer will
problems of classification and retrieval to the library staff. overly complicate and burden the process of software
Finally, GTE Data Services5 has instituted a corporate- development. An approach which does not provide
wide program, with the stated goal of developing a reuse usage metrics will be difficult to assess. Even when these
culture. This program encompasses management problems are addressed, a library system is only a partial
procedures and tools which support reuse. Several solution. The library system must be readily available,
groups support the activities of the software easy and pleasant to use, and directly supported by the
development lifecycle, including management, software development process.
classification, maintenance, development, and reuser Contel has approached the problem of library-based
support. These groups represent a new culture and reuse in its Federal Systems Division through the
process which must be assimilated prior to implementing creation of a library system which is integrated into a
reuse in an organization. software engineering environment which directly

supports and encourages reuse. This is accomplished by
The reuse problem automating both the tools and the process for performing

reuse activities within a central controlling environment
The approach described in this paper addresses the for software development.

following three problem areas for library-based reuse of
software lifecycle work products: The Component Retrieval System

The creation, enrichment and The Contel Technology Center (CTC) has created a
maintenance of a library series of prototypes of a Component Retrieval System

(CRS) which use a faceted classification approach6 to
Library-based systems require support and ongoing classify and retrieve reusable components. A component

maintenance. Manual systems will need support staff to is any work product from the software system lifecycle,
maintain catalogs of components, and to assist in the including algorithms, module designs, software modules,
selection and extraction of components from the library, specifications, requirements, test plans, etc. The use of
All library systems require some form of classification for a faceted classification approach and domain partitioned
each work product in the system, and the update and collections address two major inhibitors of reuse:
maintenance of the work products in the library, simplification of searching for particular components and
Procedures must be implemented prescribing the use of assessment of the relevance of a reusable component to
the library, and the method of submitting new or a particular application.
enhanced work products into the library.

The goals of the current reuse library
The resistance of software enaineers to Prototve
reuse Programs

The current CRS prototype was designed to address
The use of a library of work products must not overly the limitations of the current library systems in a number

complicate the analysis, design, and implementation of of areas. The implementation is based on the UNIX
software systems. Software engineers must be operating system and X Windows graphical user
encouraged to perform reuse activities, and be directed interface (GUI) technology. This technology provides a
to explore existing solutions prior to creating a new bit mapped, windowing environment with multiple
solution to the problem at hand. concurrent processes, while providing a consistent and

understandable user interface. It also provides simplified
Assessina the value and level of reuse In a integration of the CRS into an Integrated Process
proiect Support Environment (IPSE). The use of a windowing

GUI allowed for a consistent user interface design, with
Management must be able to assess the success of functions grouped logically into different windows. This

reuse efforts in a project. The specific amount of effort improves the usability of the system.
spent in attempting to reuse work products, the resulting Simolification of the creation and administration of a
amount of reuse in a given project, and the success of libra The CRS is designed such that all features
the project and the individuals within a project in reusing needed by a librarian are integrated into the system, andwork products should be provided by the process andneddbalirinaeitgaednothsyean
library systems. are simply unavailable to non-librarian users. All of thelibrarian's tasks, such as the classification of new

The implementation of library based reuse systems components, are performed within the CRS windowed
poses several problems. An approach which is difficult to environment. There is no need to understand the

101 9th Annual Notional Conference on Ada Technology 1991

underlying DBMS/repository, or to learn any database project. If this is done, the CRS will provide project-wide
query language. reuse metrics including user sessions, number of

Imoroved usabili The CRS presents a consistent searches, number of matches, number of extractions,
window and menu based user interface. Each window and other information. The tool provides metrics on the

contains a menu bar at the top showing all available use of the vocabulary for searches, which can assist the
groups of functions, with drop-down menus for each librarian in fine-tuning the classification system.

activity showing individual functions. Unavailable
functions are "grayed-out' indicating that they are A tour of the CRS
currently inappropriate. Wherever possible, choices are
presented as scrolling lists that the user may use to Gettina started: When a software engineer specifies
select desired values. Consistency checks and error a module's functionality and the data it needs to
dialogs are provided to prevent user errors. Context manipulate, and then wishes to locate a pre-existing
sensitive help is available for every user action. Users module for reuse, he utilizes the CRS to find existing
may customize the layout of windows, and establish modules in the component library which may satisfy
default values for items such as work product extraction those needs.
paths, printers to use for output, and search parameters. Searching: The process of searching for a reusable

Improved Availability. The CRS is implemented such component in the CRS involves first selecting the
that a number of users may access the centralized collection, or domain, and then specifying the
repository simultaneously without degrading response characteristics of the desired module using the faceted
times of library queries. The entire tool can be closed classification system. Figure 1 shows an example where
down into a desktop icon and left active within the IPSE the user is about to select a value for the Functional Area
while the user performs other tasks. It may then be facet for use in a search. The Main window (mostly
accessed again without delay when needed. obscured) shows information on the selected collection.

The Search/Retrieve window contains the search
Detailed usa e metrics. The CRS tracks a number of criteria, and the Term Selection window (the topmost

items within the system and produces a number of window) has just popped-up in response to a mouse click
metrics on usage. Each user may be assigned to a in the Term column next to the Functional Area facet.

Zi Software Component Retrieval System

Coflection Name: C3 Software

rl Search/Retrieve Components

Facet Searches Facet Term Expansion

Component Type software 0

I FunctionaJ Area Don't . n

Language Ada , ' Term Selection
IMedim Don't

Terms Don't Care
Communications

Attribute Searches Attribute Vah Data cculations

Name Dn't C Data conversion
Name Don't C Data formatting

Date Entered Don't C Data structures
Date Modified Don't C .___________

Tota Matching Components] Selected Term L

Figure 1: Entering Search Criteria into the CRS

9th Annual National Conference on Ado Technology 1991 102

Fortunately, it is much easier to perform these activities information for the software engineer to decide whether
than it is to explain themi or not to extract and reuse the component. The first view

JExecutingasearch: At any time during search criteria shows the full faceted classification for the selected

entry, the user may get a count of the number of component. A second view displays the component's
matching components based on the current search description and a count of the number of inspections and
criteria by pressing the Search button. This will update extractions performed on it, as well as the date the

the Total Matching Components field, without actually component was entered into the system and the date it
retrieving any components. In this way the user may start was last accessed. The third view of the component
with a more general search, and add additional shows any relationships and/or dependencies this
constraining facets until the count of matching component has with other components in the collection.
components is small enough to browse through. The fourth view is of the component itself. If the software

engineer decides to extract the component, the CRS will
Selectina a matching comonent for inspection: The make a copy of the component (and optionally, all of its

CRS will display a list of all candidate modules which related and/or dependent components) into the user
exist within a collection that match the desired selected directory.
characteristics, and then allow the software engineer to Comgonent evolution: If a component is extracted
inspect any of the mat.ing components for possible om h e tbase tind i a componently adapted
reuse. Figure 2 shows an example where the user has from the database and is then subsequently adapted forselected the component named CdrHandlerype. The the particular task, it would be a candidate for inclusion
Search/Retrieve window contains the matching into the CRS collection as a new component which iscomponents from the search, and the selected related to the original. If a performance enhancement orcomponent's description is displayed, error correction is performed, then the component mighteither replace the existing version or be placed into the

Inspecting and Extracting components: The CRS will CRS as a related component.
display a component detail window which allows for Collection enrichment: When a software engineer
detailed inspection of a matching component. This does not find an existing component in the CRS, the
window can display four different views of a component. knowledge of the collection tnd classification of the
As shown in Figure 3, the four views provide sufficient newly created module, gathered from the searches

_. Software Component Retrieval System

Collection Name: C3 Software

r Search/Retrieve Components

Matching Components Component Description

Cdr..'Handler Body of task type CdrHandlerType. Subcomponent of
Cdr_HandlerBody CdrHandler.
Cdr

_-Imdler..Type

L

Selection

,Cdr _Hndler..Type

e Total Matching Components

Figure 2: Selecting a matching component for inspection

103 9th Annual National Conference on Ada Technology 1991

r ~Component Cdr-Handler ID: 31

Faes Fet Term

Comp~oent Type sotafre
Fwlctlo Area copmzalons

Date Ent"re I 182
Date Moified 11114A)D

Component Cdr-Handler ID: 31

Oescripon Apda MPbe of apdtlneb1
NwnWe of Extractions; I

Dais Entered: I I182S0

Dale Last Moified: 11114)90

r IjComponent: Cdr..Handler ID:31

Used By uses Description, for. CrHalefoc ID. 32

CdrjlwirBody Internal-Record [Ada
CdrHWWdIerype Sizes package
RouterType body of

Cadr Handler

Zi Component: Cdr-Handler ID 31

Component

-- 1 CCOMPONEWKIND TOD
-- next kne added for 3B2 iplementation

with, sizes,
with, Config..ata,
wilth Interne1l1ecord,

task type C rHvder.Type is

Figure 3: Views of a component

9th Annual National Conference on Ada Technology 1991 104

attempted by the software engineer, could be used when procedures, standards, and lifecycle methodology for
adding it to the CRS. The component should be each individual project that uses the IPSE.
designed for reuse using language specific reusability
guidelines. A number of guidelines exist for the Ada 7, C Addina value throuah Integration
and COBOL5 languages.

Automaed classification of new components is not The CTC and PEP are now jointly working on
currently feasible, but as discussed above, the process integrating the CRS into the PEP IPSE. This integration
of determining whether or not a component exists is intended to provide the engineers using the IPSE fast,
provides alluable information about a component easy and convenient access to the CRS database, while
created toM a need not currently addressed in the reuse at the same time providing the CRS database with
library. A method which captures this information can be immediate access to baselined and approved project
provided through integration of the CRS into an IPSE data. This integration provides the ability to have the
which has full control of all objects within the IPSE serve as the single point of focus during the entire
environment, project development effort. Not only are the tools

available for all of the activities of new softwareThe collection and evaluation of usage data within the development, but now the ability to access a reusable
CRS provides insights into the classification system's component database has also been incorporated.
accuracy in specifying the components contained within
a collection, as well as usage patterns of development In order to take full advantage of the CRS integration,
projects and individual software engineers. Coordination the PEP is adjusting the project lifecycle or process
of this data with the project-wide data provided by an definition steps to incorporate reuse. This is intended to
IPSE can provide metrics on reuse levels within a establish the culture that an engineer should first
project, cost savings, and reuse library enhancement on investigate the CRS domain that matches his project
a per-project basis, and can aid in the effort estimation of before embarking on a new development effort. The
similar projects based on past reuse levels. CRS to IPSE integration method will ensure that

software engineers are directed to the CRS at multiple
The Process Enhancement Program points in the development lifecycle, including

requirements analysis, functional specification, design,
Contel Federal Systems (CFS) Government Systems and implementation. This facilitates reuse by providing

Group established the Process Enhancement Program several opportunities to locate existing work products
(PEP) in January of 1989. The PEP is Contel's Software throughout the lifecycle, and assures that development
Engineering Process Group (SEPG), and is chartered to of new software to satisfy a requirement cannot take
systematically improve CFS' ability to win, and to place until a search of the proper domain's reuse library
perform successfully on, software-intensive Government has taken place.
systems contracts. The PEP is addressing the following Since future releases of the IPSE are intended to
four areas where improvement is needed: Policies, centrally manage each object within the environment, the
Procedures and Standards, Metrics and Estimation, integration of the CRS into the IPSE will utilize this
Training, and Tools and Environment. One of the control to communicate the status of a component as
advantages of this effort is that the PEP began the reused if it was extracted, or as new if no reusable
improvement process with no pre-conceived notions of component is located. For a reused component,
either what the process would look like or how much it information relating to the existing classification can be
would costto complete. associated with the component while in the IPSE. For a

The Tools and Environment task area of the PEP is new component, information captured during CRS
responsible for defining and constructing a highly searches for the component can be associated with the
automated, fully Integrated Process Support newly created component in the IPSE. In both cases, the
Environment (IPSE) for system design and development. information can be used as a classification aid when the
The environment must be capable of supporting a wide component is completed and returned to the CRS.
variety of dlferent types of users (managers, analysts, Additionally, the usage data captured from the CRS will
developers, testers, etc.) in a distributed network be integrated into the IPSE data to enhance the analysis
environment, of project level metrics.

PEP has two major goals for the IPSE. The first goal Conclusion
reflects the major reason why an organization would
undertake building or acquiring an IPSE: increasing There are a number of problems with library-based
product quaty. The second goal is unique to the overall reuse methods for storing and retrieving software
approach of the PEP; i.e., the IPSE is being designed lifecycle work products. Technical issues such as ease of
and engineered to automatically enforce the relevant creation, maintenance, and enrichment of the library, and

105 9th Annual National Conference on Ada Technology 1991

availability of the library, as well as the resistance of Catherine S. Kozlowskl is the Director of the Process
software engineers to reuse programs, impede the Enhancement Program (PEP) for Contel Federal
success of reuse efforts in large organizations. System's Government Systems Group. As the Director,
Additional procedures and methods must be instituted in Ms. Kozlowski is tasked with providing both
order for a reuse program to succeed. The value of the management and technical direction to the program. She
reuse program must be measurable, in order to assess has sixteen years experience in the analysis, design and
its positive impact on the software development process. development of large scale, distributed computer and
For these reasons, stand-alone reuse library systems communications systems. She was awarded the BS in
provide only a partial solution to reuse efforts. The physics, and has pursued graduate work in both nuclear
Integration of a reuse library system into an I PSE which engineering and computer science.
provides process control and project metrics is one Questions about this paper can be addressed to the
method of creating a more complete solution. The authors at the Contel Technology Center, 15000
Information and process control in an IPSE complements Conference Center Drive, RO. Box 10814, Chantilly, VA
the functionality of stand-alone reuse libraries, providing 22021-3808; (703) 818-4156
an integrated environment which supports and
encourages the reuse of software engineering work
products.

References

I. Lanergan, R.G. and Poynton, B.A., "Reusable
Code: The Application Development Technique
for the Future," Proceedings of the IBM SHARE/
GUIDE Software Symposium, October, 1979.

2. NEC, Inc., personal communication with R. Prie-
to-Diaz, June, 1987.

3. Fujitsu, Inc., personal communication with R. Pri-
eto-Diaz, June, 1987.

4. Guerrieri, E. "Searching for Reusable Software
Components with the RAPID Center Library Sys-
tem," Proceedings, Sixth National Conference on
Ada Technology, March, 1988.

5. Swanson, M. and Curry, S. "Results of an Asset
Engineering Program: Predicting the Impact of
Software Reuse," Proceedings of the National
Conference on Software Reusability and Portabil-
ity, September, 1987.

6. Prieto-Diaz, R. and Freeman, P., "Classifying
Software for Reusability," IEEE Software, January
1987, pp. 6-17.

7. Braun, C.L, Goodenough, J.B., and Eanes, R.S.,
"Ada Reusability Guidelines," Technical Report
3285-2-208/2, SofTech, Inc., April 1985.

John C. Schettino, Jr. is a Senior Member of the
Technical Staff at the Contel Technology Center (CTC).
His interests include software reuse, information retrieval
systems, and domain analysis. He received the BS in
computer science from the University of Maryland, and
the MS in computer science from George Mason
University, where he is currently studying for the Ph.D. in
information technology.

9th Annual National Conference on Ada Technology 1991 106

MEASURING ADA DESIGN TO PREDICT MAINTAINABILITY

Wei Li Sallie Henry Calvin Selig

Computer Science Department, Virginia Tech

Summarx

This paper discusses the concepts of code metrics and design This paper presents 1) the results of a research effort where
metrics. Several software complexity metrics are used in an software metrics were applied to the design; and 2) a
empirical study. They include lines-of-code, Halstead's N, E, methodology for using software metrics throughout any
and V, McCabe's cyclomatic complexity,and Henry-Kafura's software development environment where the software
information flow. The metrics are collected from both the PDL development is divided into phases. Section II describes the
Design and the resulting source code. The correlations between software metrics and background studies. The advantage of Ada
the metrics collected from the PDL design and the source code as a programming design language is also discussed. Section III
are given at different refinement levels. The correlations show presents the results of a study using metrics collected from the
that the information flow metric is independent of the refinement design using an Ada-like programming design language, to
level, while the code metrics are dependent on the refinement predict the source code quality. Section IV presents a
level. The study result shows that the prediction of the source methodology using software metrics throughout the software
code complexity metrics may be possible from the PDL design. development environment. Section V is the conclusion.
Based on the results of the study and several previous studies, a
way to develop the methodology which predict the
maintainability of software is presented. The statistical model is II. Software Metrics
also discussed.

There are two types of metrics: qualitative and quantitative. Only
quantitative metrics are of interest in this study. Software
complexity metrics can be grouped into two categories code

Imetrics and design metrics. Code metrics measure some
features of source code. Design metrics attempt to measure the

The basic problem of the software crisis is that the development logic and interconnectivity of the system components. Hybrid
of large-scale software is out of control. In the last three metrics combine one or more code metrics with one or more
decades, the research and application of software engineering structure metrics.
developed many models which attempt to bring software
development under control. Among them is the software life Code metrics are those that measure some attributes of the code
cycle model which analyzes the software development process such as length, number of control statements, and number of
by dividing it into phases. Although the software life cycle tokens, etc. Code metrics produce "counts" of some feature of
model provides certain disciplined ways of developing software, the source code. The code metrics used in this study are : Lines
it does not provide a means of quantitatively measuring the of Code 3, Halstead's Software Science (N, V, E) 4, and
product or process. To measure the software development McCabe's Cyclomatic Complexity 5. The LOC (Lines of Code)
process or product software metrics should be incorporated into is any line of program text that is not a comment or blank line,
the software life cycle. Software metrics are measures of certain regardless of the number of statements or fragments of
characteristics of a development project. "You cannot control statements on the line. Halstead's N is the length of code, which
what you cannot measure" 1. This fundamental reality underlies is the sum of total occurrences of all operators and total
the importance of software metrics, From the software engineer occurrences of all operands. V, is the vocabulary of program
or manager's perspective, metrics can represent a tool that, when which is the sum of number of unique operators and number of
properly used, enhances management control over the unique operands. E is the mental effort required to understand
development process and product quality. When applying the program. McCabe's Cyclomatic Complexity is the number of
metrics the focus of the metrics is to achieve project-specific basic paths through a program. It can be computed by counting
results. In general, the earlier in the life cycle when metrics are the number of simple conditions within each decision statement
applied, the more control there is on the quality of the product 2. and adding one.

107 9th Annual Notional Conference on Ada Technology 1991

Design metrics emphasize the overall system hierarchy and the I1. Measurin, The PDL Desion
interconnectvity of system components. The design metrics can
be further divided into structure metrics and hybrid metrics. Over the past several years, Ada-like PDL designs and the
Structure metrics attempt to measure the logic and control flow resultant Pascal source code have been collected from
of a program. These metrics take into account the undergraduate senior-level software engineering courses at both
interconnectivity among program modules that code metrics Virginia Tech and the University of Wisconsin-LaCrosse. The
ignore. Interaction among modules (through shared data project-oriented class is designed to teach students the basics of
strcture and procedure or package invocations) contributes to software engineering. The goal of this course is to expose
the overall complexity of the modules. The structure metrics that students to the experience of non-trvial program development in
are incorporated in this study are Henry-Kafura Information a "real world" environment where designing and implementing a
Flow metrics 6 and McClure Invocation Complexity 7. The project is not a single-person task. To this end, the class is
Information Flow metric is based on the information flow divided into teams. Each team is responsible for designing a
connections between a module and its environment. McClure's system that upon completion will be from three to five thousand
Invocation Complexity is a function of the number of possible lines of source code. This design includes hierarchy charts and
execution paths in the program and the difficulty of determining module specifications written in an Ada-like PDL. After a team
the paths for an arbitrary set of input data. Hybrid metics take has completed the specifications for their project, they "hire"
into account both the complexity contributed by system classmates to implement the modules in Pascal. Finally, the
component (module) itself and by the interconnectivity of the design team must integrate the modules into the completed
system components. Hybrid metrics are a combination of one or program. The completed projects that have been finished by the
mote code metrics with one or more structure metrics. The classes are varied; games, development tools, and inventory
hybrid metrics that this study incorporates are the hybrid form of systems. It is impossible to monitor all of the designs of all of
Henry-Kafura Information Flow Complexity and Woodfield's the students; in fact, the students alone decide on "English-like"
Review Complexity 8. Woodfield's Review Complexity specifications, "code-like" specifications, or somewhere in-
attempts to measure effort in terms of the time required to between.
understand a module. Although both code and design metrics
result in numbers that somehow represent the "goodness" of a After the PDL and Pascal code have been processed by the
program, it has been shown that the two types of metrics are analyzer and metrics have been generated, procedures must be
measuring different features of the software 9,10. combined into modules. This is necessary because there must be

a one-to-one correspondence between the design and source.
There are several studies the in metrics area which have The method used is simple. A single PDL procedure may be a
encouraging results. In a study conducted by Henry and Selig definition of the function performed by several Pascal
10, the software complexity metrics are collected from the procedures. In order to equate the design and source, it is
design written in an Ada-like PDL, the metrics are then used to necessary to add the complexities of each of the Pascal routines.
prdeict wten o e ce qality. Dhetais re thefrom this In this way, the design complexity is directly comparable to thepredict the source code quality. Details of the results foth s ouc opeiyo ucinllvlTeewr 8 oue
study are given in Section II. There are two project-specific source complexity on a functional level.There were 981 modules
objectives in the study. One is to apply metrics to design. The to analyze from 27 projects.
other is to see how meaningful the design measurement is. Their The simple use of correlations on a project-by-project basis is
results agree with Rombach's result . In Rombach's study, he not very informative as far as the ability to predict source code
finds that structure metrics are more useful in predicting the notpvey in er a t b to eitsurcefcodmaintainability of a software system, and that most of the complexity is concerned. Many of the design teams typify a

the problem in software development. Givn a choice betweenimportant structural decisions had been made irreversibly by the doing a job well and doing the same job with as little effort as
end of architectural desigai 11. In another study conducted by possible on their part, they choose the latter. This problem
Steve Wake and Sallie Henry 12, the metrics collected from the reinforces the belief that the specification phase of a project must
source code are used to predict the maintainability, be closely monitored to ensure that a useful design is the end

result. Since the results of the correlations on a project-by-
All of the above studies in metrics have encouraged us to project basis give so little useful information, it is informative to
conduct an experiment to develop a methodology which look at the data as a single entity as opposed to 27 different
incorporates the software metrics into the software life cycle. In segments. It is hoped that by doing so, the projects that are not
the methodology, metrics are collected from the design written in well specified will be offset by those that are. It is also desirable
a PDL (Programming Design Language). The maintenance to examine the data as a whole in order to develop predictors for
history of the code is collected. Then multiple linear regression each metric. Preliminary results indicate that the code metrics are
is performed to get the prediction equation for the strongly dependent on the level of the refinement while the
maintainability. This prediction equation could be used in the structure metrics are independent of refinement level. This
development environment as a quality control tool for either the agrees with Rombach's result from another experiment 11. A
manager or the system designer. Ada is recommended as the highly refined module would contain code-like specifications,
programming design language because 1) Ada provides a while a low refinement level indicates the predominance of
uniform, black-box view of different types of program modules; natural language specifications. To determine the validity of this
2) Ada supports top-down refinement of nested modules in hypothesis, the routines are divided into three categories; low,
program test; 3) Ada supports the postponement of commitment average, and high levels of refinement. Each level is analyzed
to the target hardware configuration; 4) Ada supports individually, where the analysis consists of (I) correlations to
information hiding through packaging; 5) Ada supports the determine the overall trends of the data, and (2) simple linear
separation of specifications and bodies of packages and tasks; 6) regression analysis to obtain the predictors.
Ada supports a rendezvous mechanism for intertask
communication. The tool to collect metrics automatically from As mentioned above, it is informative to examine the metric
design is also very important in applying metrics in a values based on the level of refinement of the specifications. In
develo,-ent environment. Such a tool has already been built as order to accomplish this purpose, it is necessary to determine the
a front end in a Metric Analyzer in Virginia Tech 12,13. refinement level for each routine to be examined. It seems

9th Annual National Conference on Ada Technology 1991 108

reasonable that as the refinement level increases, the length of
the module also increases, but more importantly, the number of
ontrol structurs will increase as well.

Table I shows the correlation of design metrics and the code
metrics. 6

Table 1. Metric correlations by refinement level

Unq, kwad 1.d., ',

t. .. .l I A
L M 0 .6 10 O . ,| 0 2 (12 1 1 0 0 0 9 (3, , ' . "

H h 0"10 053 .% 0 06 090 0 '9.

The analysis ofresults in Table I shows that 1) Structure metrics . 2 1 , S 6 7
required only a low level of refinement to be effective, but 2)
Code metrics required at least a moderate amount of detail. The
Information Flow metric appears to be independent of Figure 2. Low-refinement regression and 9S%-confidence
refinement level. The code metrics reacted as predicted. They lines for information-flow metric
do not perform well at a low level of refinement, and their
corelations increase as level of refinement becomes greater. An
interesting result is that the metrics perform quite well at even a
middle refinement level. This indicates that after a minimum
amount of detail is included in the specifications, the code
metrics become useful measures.

Figures 1 and 2 show plots of the lines-of-code metric and the
information-flow metric respectively, at a low level of
refinement. Figure 3 shows the lines-of-code metric at a high
refinement level, indicating the improved prediction. Figure 4
shows the information-flow metric at a high refinement level,
demonstrating that the metric does equally well regardless of
refinement level.

30-

401

20

'ic 260 300 0LDoore 10 20 30 40 5 0 s O 0 So 0 100 10

Figure 1. Low-refinement regression and 95%.confidence Figure 3. High-refinement regression and 95%-coufidencenes for the lines-of-code metric lines for the lines-or-code metric

109 9th Annual National Conference on Ado Technology 1991

This research shows three things that will extend the metrics
utility and application :1) structure and hybrid metrics are
extremely useful at design time. (Although not treated separately
from structure metrics, this study did include hybrid metrics,
which were structure metrics with a small component of code
metrics); 2) automatic generation of metrics for design
specifications is not only possible with an analyzer similar to the
one used for this research, but it is also desirable; and 3) using
the method for generating prediction equations, coupled with
intimate knowledge of a detailed design, a designer can

4.' determine a specification's refinement level and determine the
resulting source code's complexity.

V. The Develonment of The Methodologv

Several studies show the possibility of measuring the design

with existing metrics 10,11,14. Henry and Wake's study 15
1shows the possibility of predicting maintainability using the

bu-vo metrics collected from source code. All of these previous results
motivate us to conduct an experiment of applying software

Figure 4. High-refinement regression and 9$%-confidence metrics throughout the software life cycle.
lines for Information-flow metric

Several factors are considered in designing the experiment. The
first factor is the selection of which metrics to use in the
research. Among all the available software quality metrics, only
those which are quantitative and automatable are used in ti-hs

Table 2 contains the inter-metric correlations for the Pascal code, experiment. The second factor is when in the software
verifying earlier studies. The data indicates that there is a high development process to collect these metrics. Metrics collected
degree of correlation between code metrics. However, from the code are successful in indicating error prone software
comparing the code metrics with the structure metric components, uncovering difficult modules 9, and predicting the
(information-flow) shows that the results are almost zero, maintenance work required 15. But metrics collected from code
indicating that the code and structure metrics are measuring are considered too late to have significant influence on the
different aspects of the source code. The inter-metric redesign effort and the reduction of the overall budget.
correlations, with respect to the design, show the same Collecting metrics earlier in the development process better
relationships as those using Pascal, and are given in Table 3. guides the redesign 2ffort and improves the quality of the end
This is a desirable result since it indicates a consistency of product, which in turn, reduces the overall budget 16 In this
measurement when comparing the designs to the resultant source experiment, metrics are collected from both the design and the
code. It also lends credence to the usefulness of performing source code. The third factor is the validation of the metrics.
complexity measures at design time. This depends on how the metric values are to be interpreted and

Pascal code used. In this experiment, the project-specific goal is to use the
Table 2. Intermetric correlations for the metrics to predict maintainability and guide the* :design effort,

therefore the successful validation of the metrics collected from
design depends on how much of the maintainability can be

oinn cd cad C...m predicted by the metrics. Therefore, the error history data of the
,, V 0.83 - - - co,,,r,, end product is collected. The metrics collected from the design

Hmad V 0 0893- - will then be used to predict the maintainability of the software

HMarad E 0.521 0749 01 - - product. With the metrics collected from the code for the same
C.WomavC*comp 0629 0176 0"11 0492 - design, the results from previous studies will be verified.
Info aton oo 0 044 0029 00-6 0005 0019

Statistical Model

Table 3. Intermetric correlations for the PDL design The use of the statistical model and the statistical analysis are the
keys to the successful development of the methodology. Wake
and Henry 15 indicated in their study that performing

Lne, Halstead Cwclooc correlations between the error data and the individual metrics
s ofcode N I E COM, n, would not give satisfactory results since they do not feel that any

094. -9 one metric will perform equally well in any environment.
Haad 1 0894 09M - - - Therefore, to determine the best set of metrics for the given
Ha adE 0465 07:5 0661 - - environment, a regression model would give more information
Co.,ccw.n O .1 0,7021 0656 0.622 - about the relationship of the error data and the design metrics.
nf ,,onrm 0.260 0.206 0249 00.9 0039 The previous studies have found that metrics in different

categories measure different aspects of the software. Therefore,
metrics from different categories together should predict

9th Annual National Conference on Ada Technology 1991 110

maintainability better than those from any single category. In this model. Therefore, not all of the code metrics may be useful in
experiment, multiple linear regression is used to predict predicting the error. A subset of all the metrics will be decided in
maintainability from metrics collected at design time. In the final prediction equation. There are three different variable
deciding the independent variables (metrics) that should be selection procedures. They are forward, backward and stepwise
included in the model, the inter-met'ic correlation table shown in selection. There are four statistics that can be used to examine
section Ill is considered. In order to avoid 'underfit' problem the quality of the prediction: R2, adjusted-R2, MSE (mean
which might occur in regression when too few predictors are square error), and C(p). R2 is the amount of total variability
used, we include all the metrics collected using the Metric accounted for by the regression in the sample. It increases when
Analyzer tool developed in Virginia Tech 12 In the multiple adding more predictors into the model. The adjusted-R2 is the
linear regression model, different metric values are used as estimated amount of total variability accounted for by the
independent variables, and the number of errors as the regression in the population. It is adjusted for the number of
dependent variable. Multiple linear regression will be performed predictors in the regression model so that it may or may not
at procedure and system level. The multiple linear regression increase as more predictors are included in the model. The
model for the experiment is defined as adjusted-R2 is always less than R2. They are both within the

range of 0 and 1. The MSE is the measurement of the errorY:IO+0I*XI+02*X2+P3"X3+P4*X4+05*Xs+P6*X6+07 * variance in the regression. It does not give more information

X7+Pg*Xs+e. than the adjusted-R2. It is possible that the regression model is
where Y is the dependent variable representing the number of biased (underfit) due to too few predictors in the model, or
errors. X1 through X8 are independent variables representing overfit due to redundant predictors The quality predictor takes

metric values. The e is the error term in the into account of both possibilities. A small C(p) value shouldeight different mindicate that the regression model does not have a seriousregression. The eight independent variables are defined as Ifollowing: 'underfit' or 'overfit' problem. In this experiment, adjusted-R2,
XI :LinesofCode. and C(p) are considered as the quality judgment for the
X2 : Halstead N. regression equation.

X3 : Halstead E. Step 4: Cross Validation
X4 Halstead V. The cross validation procedure is used to determine if the
X5 : McCabe's Cyclomatic Complexity. prediction equation is tailored too much for the sample data used
X6 : Henry-Kafura Information Flow Complexity. in performing multiple linear regression. Any variable selection
X7 : McClure Invocation Complexity routine is using the sample to help determine the model. Thus itis entirely possible that we will tailor the model too precisely to
Xg: Woodfield's Review Complexity. the data at hand. In this event the model will look great for our

sample but may not work at all in the population. To protectStatistieal Analvsis against this possibility, cross-validation should be used any time
a variable selection routine is employed. For each data point in

The statistical analysis has five steps: dividing the data, group B which is not involved in the regression, get the
significance test on the full model, variable selection, cross predicted Y value using the equation, and then test the
validation, and best prediction equation. correlation between the observed Y and the predicted Y at the

5% significance level. Also the MSEB and MSEA are compared
Step 1: Dividing the data to see if the former is significantly larger than the later. If that is
Randomly divide the data into two equal groups, group A and the case, then the predicting equation is tailored for the sample
group B. Group A is used in steps 2 and 3. Dividing data into data. If the correlation test is determined to be non-significant or
two groups can avoid the 'overfit' problem in regression. the MSEB is significantly larger than MSEA, then the cross
Whenever variable selection routine is used, there is a possibility validation fails. If the cross validation is unsuccessful, the model
that the predicting equation is tailored just to fit the sample data. has been tailored too precisely to the sample, another try will be
To avoid this problem, the data is divided into two groups. Only attempted with fewer predictors.
one group is used to perform the regression. When the
regression turns out to be significant, another group of data is Step 5: Best prediction equation
used to verify the equation. And finally, the whole set of data is If the cross-validation is successful, the terminal model is run
used to perform the multiple linear regression again to get the again using all the data (group A and group B) to obtain the
best predicting equation. most stable estimates of the regression coefficients.

Step 2: Significant test on the full model Develonment of the methodologv
Using the F-test at 5% level to see if any prediction from the
model is possible. The null hypothesis used is : HO: The traditional software development models, like the waterfall
01424.344=05= =7=084. Thi goal is to reject the null life cycle model 17 and spiral model 18, provide systematic
hypothesis which means that some prediction is possible. methods to separate the development process into different

stages with an explicit communication boundary between two
Step 3: Variable Selection consequent stages. Most of the verification and validation of in
If from step 2 some prediction is possible, we would like to see the existing models are 1) to check if the documents are
if a subset of independent variables could be picked which does complete; 2) to see if a certain discipline is enforced; 3) to
essentially as good of a job as the whole set of independent check if the documents produced are consistent with those
variables. Based on the previous studies, some metrics correlate accepted at the beginning of the phase (produced by the previous
very high with some other metrics. Since multicollinearity may phase). This methodology provides 1) the quantitative
exist among code metrics, the partial sum of squares of any code evaluation of the design 2) feedback information to help the
metrics given the rest of the code metrics may be near zero. This redesign effort; 3) improvement in software development
indicates that there might be some redundant predictors in the efficiency; 4) reduction of the budget. The methodology

111 9th Annual National Conference on Ada Technology 1991

suggested in this research incorporates all of those which are not 5. McCabe, Thomas J., "A Complexity Measure", IEEE
provided by the existing models. The current ongoing research Transactions on Software Engineering, Vol. 2, No. 4,
project is sponsored by Software Productivity Solutions (SPS). December 1976, pp. 308-320.
The software development environment used is SPS follows the
spiral model l8 which includes multiple builds. The design 6. Henry, Sallie, Dennis Kafura, "Software Structure Metrics
method used in SPS is the Ada box structure design method Based on Information Flow," IEEE Transactions on
pioneered by Harlan D. Mills 19. The method is modified to Software Engineering, Vol. 7, No. 5, September 1981,
support the object-oriented paradigm. Classic-Ada 2 0 is used as pp. 510-518.
the prognamming design language in the environment. Classic- 7. McClure, Carma L, "A Model for Program Complexity
Ada is a superset of Ada. The Classic-Ada processor could parse Analysis," Proceedings: 3rd International Conference on
all the Ada syntax plus nine new object-oriented constructs Anas ineering May 1978, pp. ference7.
which supports the object oriented design concepts such as Software Engineering, May 1978, pp. 149-157.
inheritance and dynamic binding. The dfinal version of the 8. Woodfield, S. N., "Enhanced Effort Estimation by

design being the code in Classic-Ada. The Classic-Ada code is Extending Basic Programming Models to Include
then processed by the Classic-Ada Processor developed by SPS. Modularity Factors," Ph.D Dissertation, Computer Science
The MIL-STD-1815A standard Ada code is then generated by Department, Purdue University, December 1980.
the processor. The error history data collected contains the 9 Henry, Sallie, Dennis Kafura and Kathy Harris, "On the
information about the type of the error, its severity, where Relationships Among Three Software Metrics,"
(which procedure or package) it was discovered, who Performance Evaluation Review, Vol. 10, No. 1, Spring
discovered it, and who fixed it. For the software development 1981, pp. 81-88.
environment in SPS, the metrics could be applied in each phase
of the design, and multiple linear regression could be performed 10. Henry, Sallie, and Calvin Selig, "Predicting Source-Code
at each step of the design to reveal the relationship of different Complexity at the Design Stage," IEEE Software, March,
types of metrics and the maintainability in terms of number of 1990, pp.36-44.
errors.

11. Rombach, Dieter, "Design Measurement: Some Lessons
Learned," IEEE Software, March 1990.

12. Henry, Sallie, "A Technique for Hiding Proprietary Details

By applying metrics to the design, the methodology which While Providing Sufficient Information for Researchers;
predicts the maintainability of the software product may be or, Do you Recognize This Well-Known Algorithm?", The
developed and tailored for a specific environment. There are Journal of Systems and Software, Vol. 8 No. 1, January
three necessary conditions for the development of the 1988, pp. 3-11.
methodology: 1) the software development process in the
environment is divided into separate phases; 2) a PDL is used as 13. Chappell, Bryan, Sallie Henry, and Kevin Mayo,
the design tool; and 3) the maintenance history data of the end "Measurement of Ada Throughout the Software
product is collected. With the prediction of maintainability of the Development Life-Cycle," Proceedings of Eighth Annual
software in the design phase, potential problem areas may be National Conference on Ada Technology, March, 1990,
detected and corrected early in the software development pp.525-532.
process. Due to the early control and consideration of the
maintainability, correcting problems within the design without 14. McCabe, T., Butler, C., "Design Complexity
implementing it is possible. This would reduce the development Measurement and Testing," Communication of the ACM,
and maintenance cost and produce higher quality software December, 1989, pp. 1415-1424.
product. The methodology could make a large contribution to the
software development community towards their goal of 15. Wake, Steve, and Sallie Henry, "A Model Based on
achieving a quality software product which has a low Software Quality Factors Which Predicts Maintainability,"
development cost. Proceedings: Conference on Software Maintenance-1988,

pp. 382-387.
16. Kafura, Dennis and Sallie Henry, "Software Quality

Bobli.gralkh Metrics Based on Interconnectivity," The Journal of
Systems and Software, Vol. 2 No. 2, June 1982, pp.1. DeMarco, Tom, "Controlling Software Projects: 121-131.

Management, Measurement & Estimation," Englewood
Cliffs, NJ: Yourdon Press, 1982. 17. Royce, W. W., "Managing the Development of Large

Software Systems: Concepts and Techniques,"
2. Mills, Harlan D., and Peter B. Dyson, "Using Metrics To Proceedings of the 1970 WESCON(Los Anageles, CA.,

Quantify Development," IEEE Software, March 1990, Aug. 25-28), Western Periodicals Co., North Hollywood,
pp.15-16. CA., pp.A/l/1-9.

3. Conte S. D., H. E. Dunsmore, and V. Y. Shen, "Software 18. Boehm, B. W., "A Spiral Model of Software Development
Engineering Metrics and Models," Benjamin/Cummings and Enhancement," ACM Software Engineering Notes,
Publishing Company, Inc., 1986. Vol.1 1, No.4, pp. 14-24, reprinted in Computer Vol.21,

4. Halstead, Maurice H., "Elements of Software Science," No.5, 1988, pp.61-72.
New York: Elsevier North-Holland, Inc., 1977.

9th Annual National Conference on Ada Technology 1991 112

19. Milis, Harlan, Richard C. Linger, and Alan R. Hevner,
"Principles of Information Systems Analysis and Design."
Academic Press Inc., 1986.

20. Software Productivity Solutions. Inc., "Classic-Ada
User's Manual," Software Productivity Solutions Inc.,
Melbourne, Florida 32936.

Wei Li

Computer Science Department
Virginia Tech

(703) 231.5853

Mr. Wei Li received his B.S. and M.S. degrees in Computer Science from Peking University. He
is currently a Ph.D candidate in the Computer Science Department at Virginia Tech. His research
interests include software engineering, software metrics, object-oriented software system
development and measurement, and large-scale software system quality control. For more
information, contact: li@vtodie.cs.vt.edu.

Dr,.Salgl Her
Department of Computer Science

Virginia Tech
703/231.7584

Sallie Henry received her B.S. from the University of Wisconsin-LaCrosse in Mathematics.
She received her M.S. and Ph.D. in Computer Science from Iowa State University. While
attending Iowa State University, Dr. Henry's research interests were in Programming Languages,
Operating Systems, and Software Engineering. After completing her Ph.D., she returned to the
University of Wisconsin-LaCrosse as an assistant professor and later an associate professor of
Computer Science.

Dr. Sallie Henry is currently an associate professor of the Computer Science Department at
Virginia Tech. She has been working in the area of Software Engineering for the past eight years.
Her primary research interests are in Software Quality Metrics, Evaluation of Methodologies,
Software Testing Methodologies, and Cost Modeling. Her most recent work has been in thevalidation of software quality metrics, with particular focus on applying metrics during the design
phase of the software life cycle. The first of two design studies uses an Ada-like PDL for designing
software and the other study incorporates quality metrics with a graphical design language. Dr.
Henry's research has been supported by funding from NSF, Naval Surface Surface WeaponsCenter, Digital Equipment Corporation, IBM, Software Productivity Consortium, Virginia's Centerfor Inovative Technology, and Xerox Corporation. She is a member of IEEE and ACM.

113 9th Annual National Conference on Ada Technology 1991

A SOFTWARE METRICS DATABASE: SUPPORT FOR ANALYSIS AND DECISION-
MAKING

Shari Lawrence Pfleeger and Joseph C. Fitzgerald, Jr.

Contel Technology Center

Chantilly, Virginia

Abstract: We describe a software metrics corresponds to a Software Engineering Institute process
database that is generated from a software maturity level. Each level of metrics allows management
metrics toolkit. The database is implemented as a more insight into and control over the process and its
collection of integrated spreadsheets and constituent products.
associated macros, so that the analyst can
examine the metrics data for a particular point in Second, we provide each development project with a
time or over time, as she or he chooses. The software metrics toolkit and underlying project database
advantages of such an approach are ease of use, tailored to individual project needs. The toolkit contains
flexibility, and ease of extension to other tools and metrics tools to collect and analyze data appropriate for
techniques. the project's process maturity, development

environment, and management needs and preferences.
The database supports two activities. First, its contents
can be used by the tools and by project managers to

Introduction monitor and make decisions about the development
process. Second, the database contents can be

Software metrics allow managers of development transferred to the Contel corporate historical database.
projects to monitor and control software quality. The contents of the corporate database are analyzed to
Quantitative quality goals can be established at a examine trends, make predictions, and set standards for
project's inception. Then, measurements made during future projects.
development can track progress toward achieving the
goals, as well as guide further development and testing. This paper describes both the toolkit and the project and
Even during maintenance, metrics can reflect the effects corporate databases. It explains how commercial
of changes in size, complexity and maintainability, metrics tools are evaluated using criteria based on
However, both management and software engineers Contel's extensive CASE tool evaluations. The
often balk at the additional time and labor needed to evaluation results are stored in a repository, and
support metrics data collection and analysis. For information is retrieved using a faceted classification
example, the Software Engineering Laboratory at the scheme. Once the desired tools are selected, they are
University of Maryland reports that data collection and fashioned into a toolkit with a supporting project metrics
analysis add 7 to 8% to the cost of a project, 1 and database. The Contel corporate database is an
DeMarco estimates that development costs increase amalgamation of the project historical databases. Over

between 5 and 10%.2 Thus, tools and techniques must time, the corporate database will act as an important
be available to software engineers to minimize the historical record of the way Contel develops its software,
degree to which they are distracted by their metrics and decisions about new projects can be made based on

duties. Only then will metrics become a welcome part of past history, not just on expert judgment.
software development.

Tools Evaluation
At the Contel Technology Center, we are addressing this
need in several ways. First, we recommend that the To provide the metrics for a database, commercial
collection of metrics be tied to the maturity of the metrics tools were evaluated using criteria based on
development process.3 4 The metrics are used not only Contel's CASE tool evaluations.5 Two stages were
to monitor the activities in the process but also to help involved. First, a paper evaluation addressed the
improve the process itself. Our recommended set of characteristics of the tool described in the vendor
metrics is partitioned into levels, each of which literature and tool documentation. Second, a hands-on

9th Annual National Conference on Ado Technology 1991 114

trial of each tool was performed, where possible. The together; the design of the database reflects this added
criteria for evaluation and a list of current results are flexibility. As each tool generates a picture of the project
reported In a Contel technical report.8 The evaluation at a point in time, the new data are converted to a
results are also stored in a repository on an IBM PC, and spreadsheet stored with similar spreadsheets from
information is retrieved using Prieto-Diaz's faceted earlier in the development or maintenance process.

classification scheme.7 The faceted structure allows a Thus, the spreadsheets are designed as shown in Figure
project manager to select descriptions of existing tools 1, so that a set of "snapshots" of the product and process
based on descriptors such as desired metric, can be taken over a period of time. That is, the same
environment and method. For example, a manager can metrics are measured at different points during the
request all tools in a VAX environment that measure development process, so that trends and patterns can be
complexity using cyclomatic complexity. observed. For example, size (in lines of code) can be

traced from one spreadsheet to another over time, and
By having the evaluation results on-line, the repository the overall growth of the code can be graphed and

can always report the most current information on tools

available. As tools are used in the corporation, likes and analyzed. Similarly, the number of errors found in

dislikes can be reported and recorded in the appropriate requirements, design, code and test can be tracked
longitudinally. This analysis can lead not only to

evaluation tie. In this way, project managers can choose assessments of the quality of the products but also to
metrics tools most appropriate for their needs. understanding of the effectiveness of the process: where

are we finding most of errors, and why?
The Prolect Toolklt

Once the desired tools are selected, they are fashioned
into a toolkit with a supporting project metrics database.8 Reqts Design Code Test Doc-nt

In most cases, the toolkit is built on an IBM PC, and the
database is composed of Lotus 1-2-3 spreadsheets.
(Where the project manager prefers other tools or a
different platform, the manager is responsible for
reformatting the metrics data to a form that is consistent
with the corporate database.) The tools selected for the Size
kit include a cost estimation tool called Before You Leap
(BYL, from Gordon Group, San Jose, California) and a
code analysis tool called PC-Metric (SET Laboratories,
Portland, Oregon). The tools were chosen based on four
needs:

0 ease of use at time 2 PF

- access to multiple metrics in one tool at time 1

. low cost at ti le 0

0 availability for multiple development languages
and methods

In addition, Lotus 1-2-3 version 3.0 is included, as are
programs that allow users of BYL and PC-Metric to
transfer both input and output data to specially-designed
1-2-3 spreadsheets. Macros are included that allow the
user of the toolkit to display and analyze a variety of
metrics graphically, both in snapshot mode and
longitudinally for trend analysis.

Figure 1: Multiple Spreadsheet Analysis

The Prolect MetrIcs Database
Prolect Management Spreadsheet

The project database itself is a collection of
spreadsheets. Version 3.0 of 1-2-3 allows multiple The first spreadsheet in the database reflects project
spreadsheets to be stored in a single file and analyzed management data and corresponds to the information

115 9th Annual National Conference on Ado Technology 1991

required at level two of the process maturity hierarchy. * End user efficiency
Because project managers often have their own
preferred project management packages, this * On-line update
Information is entered manually by the user of the toolkit.
Data requested include: . Complex processing

" Actual software size • Reusability

" Effort to date (staff-months) a Installation ease

" Budget allocated 0 Operational ease

" Budget spent 0 Multiple sites

• Elapsed time (days) 0 Facilitates change

New metrics recorded over time are tracked within one From these constraints is derived an adjustment factor
spreadsheet, across the rows. The final column should and a calculation of total adjusted function points.
represent the completed project. Analysis of these data over time tells us how the

requirements change during development or

Process and Product Characteristics maintenance.

The second set of spreadsheets contains data from the Next, we capture the COCOMO input parameters:
BYL package. BYL uses a function points technique to
estimate size, and then implements COCOMO to
estimate effort and schedule. The value of BYL (and • Estimate of size, including amount of code that is
tools like it) to a project is not merely for estimation but new, modified and/or reused
for capturing descriptions of the requirements, the
process, the product, and the personnel. Thus, we use * Product attributes: required software reliability,
the input to the function points calculations as a way of database size, product complexity
describing the requirements for the system. These inputs
include: . Project attributes: use of modern programming

Sinputs and inquiries practices, use of software tools, required
SExternal indevelopment schedule

* External output 0 Personnel attributes: analyst capability,

. Logical internal files applications experience, programmer capability,
virtual machine experience, programming

0 External interface files language experience

to yield an intermediate measure of total unadjusted . Computer attributes: execution time constraint,
function points machine storage constraint, virtual machine

volatility, computer turnaround time
The constraints on the product are captured in the This spreadsheet tells us more about the process
ratings for a variety of adjustment factors: attributes, as well as the personnel and the development

- Processing complexities environment. As such, it satisfies many of the metrics
desired for a project at maturity level 3.

• Data communications
The output from BYL is also stored as a spreadsheet, so

• Distributed functions that effort is estimated for each of the following activities:

" Performance * Preliminary planning

• Heavily used configuration 0 Design

" Transaction rate 0 Programming

" On-line data entry * Integration and testing

9th Annual National Conference on Ada Technology 1991 116

* Maintenance These measures are viewed both in specific instances
and over time. Those modules with size or complexity

An estimated cost for the total project is also calculated considerably greater than the mean are examined to
and stored. In fact, the total cost is allocated to each of determine why; they are candidates for redesign or
the following types of participants in a typical project. rewrite. Over time, the measures are compared with

error data, and some metrics are used as predictors of
a Requirements analysts likely candidates for more thorough testing.

. Product designers Error Analysis Soreadsheets

& Programmers The final set of spreadsheets captures data about errors

* Test planners found during reviews, walkthroughs, and testing. These
spreadsheets contain the history of error discovery and

a Value engineers correction. They can be used to calculate error density
and to help determine test priorities. In addition, the error

0 Project office discovery information reveals a great deal about the
effectiveness of the process. For example, a mature,

0 Configuration management effective process will identify many errors during
requirements and design reviews, while an immature

0 Writers and illustrators process does not uncover most of its errors until testing
and integration.

From this information, estimates are made and captured

for The Corporate Metrics Database

Software development costs The Contel corporate database is an amalgamation of
SLifetime maintenance costs the project historical databases. Added to the project

information are descriptors of the development process
• Total life cycle costs itself, so that over the long term, we can determine which

process characteristics are necessary to make a project
Analysis of the BYL spreadsheet information can reveal successful. The corporate database resides on a Sun,
much about the way in which changes in requirements or using Lotus 1-2-3 supplemented with analysis using the
project characteristics are reflected as changes in Oracle database management system. This additional
schedule and effort. Regardless of the project manager's database capability allows us to answer questions not
confidence in the ability of COCOMO to predict these easily addressed with 1-2-3. For example, we can ask for
variables accurately, the inputs to BYL, viewed over all modules whose complexity exceeds a certain level, or
time, paint a picture of the volatility of certain aspects of for all projects whose error density exceeds the mean. In
software development and maintenance. The historical this way, we can analyze corporate data to determine
record so obtained can be used to predict behavior later which process activities are the most effective, how
in the project, as well as behavior on subsequent, similar requirements volatility affects the final prod~uct, and
projects. more.

Code Analysis Measurements In addition to the database analysis provided by Oracle
and by 1-2-3's statistics and graphics capabilities, we

PC-Metric data constitute an additional set of also perform classification tree analysis using a tool
spreadsheets. Here, the code is analyzed for several called CART (California Statistical Software, Inc.). This
characteristics reflecting size, complexity, and technique, suggested by Porter and Selby, allows
vocabulary. In particular, for each module we capture: managers to assess which metrics are the best

predictors of characteristics such as cost or error-
. Halstead metrics n1, n2, NI, N2, N, W, PIR, V, E proneness. s 1 0

0 McCabe complexities VG(1) and VG(2) The output of a classification tree analysis is a decision
tree that points out those metrics that have been most

a Number of lines of code effective in the past at indicating the presence of a
problem. An example classification tree is shown in

0 Number of semi-colons Figure 2. Here, we are trying to predict which modules
will have the most errors. The tree tells us to look first at

0 Number of statements size. If the size is between 100 and 300 lines of code,

117 9th Annual National Conference on Ado Technology 1991

then we must look next at the module's complexity. If the engineers. Wherever possible, metrics are collected and
complexity is 15 or more, the module is likely to have analyzed automatically, so that metrics responsibilities
errors. Similarly, if a module is over 300 lines of code and are as transparent to the developers as possible.
has not had a design review, then if it has been changed Managers can concentrate on the results of the analysis,
five or more times, it is likely to have errors. I he decision not on the generation of information from the data
tree is based on a statistical analysis of data from past collected. At the same time, the maintenance of project
projects. This type of analysis will help to tell us which and corporate metrics information is relatively painless.
process activities are the most effective, which tools
work best with which processes or projects, and which It is Important to note that the metrics chosen are those
modules require the most concentrated testing. that help to analyze the product and the process, not the

people themselves. Experience has shown us that when
the focus of the metrics program is process
improvement, rather than on criticism of the developers
themselves, people are willing (and often eager) to
supply data and analyze the metrics.
The field of software metrics is relatively immature, and
it is easy to refuse to collect metrics until a

omplexi evie comprehensive and definitive set of metrics has been
developed. However, such an attitude ignores the power

<15 >15 of existing metrics to predict and guide when the metrics
program is tailored to the needs of the organization using
them. Contel's metrics databases are a giant step
forward in the search for understanding and controlling
software development. We anticipate that we will be

ou adding new metrics, dropping old ones, and revising ourthinking as we learn more about how our company
<5 develops software. A great advantage of the

classification tree approach is that we need not collect
the same metrics on all projects in order to be able to
analyze trends and make decisions. Thus, no matter
where we start, the project and process histories we
build will always be useful to decision makers. Our

Figure 2: Example Classification Tree corporate database lays the groundwork for future

Over time, the corporate database will act as an software development and maintenance at Contel.

important historical record of the way Contel develops its
software. Eventually, the corporate database will be References
used in concert with project management packages to
produce more accurate estimates of effort and schedule. 1. David Card and Robert Glass, Measuring Soft-
Decisions about new projects can be made based on ware Design Quality, Addison-Wesley, 1990.
past history, not just on expert judgment.

2. Tom DeMarco, Comments made at the 12th Inter-
Summary and Conclusions national Conference on Software Engineering,

Nice, France, March 1990.
The metrics toolkit and databases described here are the
first steps in Contel's implementation of a corporate-wide 3. Shari Lawrence Pfleeger, Recommendations for
metrics program. We plan to add tools to analyze design an Initial Set of Software Metrics, CTC-TR-89-
complexity, based on work by Wayne and Dolores Zage 017, Contel Technology Center, 1989.
at Ball State University.1 1 In general, we hope to
implement more metrics at the design and requirements 4. Shari Lawrence Pfleeger and Clement L. McGow-
stages of development, in the hope of being able to an, "Software Metrics in a Process Maturity
predict and fix errors early in development. Later Framework", Journal of Systems and Software,
implementations of the toolkit will contain tools to help July 1990.
guide testing and to predict software reliability. 5. Shawn Bohner, Computer Aided Software Engi-
The metrics toolkits and databases remove the burden of neering Tools Evaluation Criteria, CTC-TR-89-
collection and analysis from the project's software 008, Contel Technology Center, 1989.

9th Annual National Conference on Ado Technology 1991 118

6. Sha Lawrence Pfieeger and Joseph Fitzgerald, projects, he developed two software component library/
Jr., "Software Metrics Tools Evaluation", Contel retrieval systems to support reuse of existing software.
Tecihology Center Technical Note CTC-TN-090- He prototyped other software library systems using
017, September 1990. retrieval techniques from artificial intelligence.

Fitzgerald's research has included Investigation of
7. Ruben Prieto-Diaz and Peter Freeman, "Classify- domain analysis methodologies, and the application of

ing Software for Reusability, IEEE Software, research results to the domain of command and control
1987. systems. He has over five years of industry experience in

computer programming and software engineering.
8. Shar Lawrence Pfleeger and Joseph C. Fitzger- Fitzgerald received his B.S. in Computer Science from

aid Jr., "A Software Metrics Toolkit: Support for Drexel University in 1987 and is currently pursuing a
Selection, Collection and Analysis", Proceedings graduate degree in software engineering at George
of the Eighth Annual Pacific Northwest Software Mason University. Fitzgerald is a member of the IEEE
Outy Conference, October 1990. Computer Society, ACM and ACM SIGAda.

9. A. A. Porter and R. W. Selby, "Empirically Guided
Software Development Using Metric-based Clas-
sification Trees", IEEE Software 7(2), March
1990.

10. Shari Lawrence Pfleeger, Joseph Fitzgerald Jr.
and Adam Porter, "The Contel Software Metrics
Program", Proceedings of American Society for
Quality Control First Annual Conference on Soft-
ware Metrics, November 1990.

11. Wayne Zage and Dolores Zage, Design Metrics,
SERC Technical Report, Purdue University,
1990.

Blographles

Shari Lawrence Pfleeger is head of the Software
Metrics Project at the Contel Technology Center's
Software Engineering Laboratory. She consults
nationwide on software engineering, computer security,
and other aspects of software systems development.
Pfleeger's current research interests involve process
modeling, maintenance metrics, and cost estimation.
She is the author of research papers in mathematics and
computer science and of two university textbooks:
Introduction to Discrete Structures (Wiley, 1985) and
Software Engineering: The Production of Quality
Software (Macmillan, second edition 1991). She
received a BA. in mathematics from Harpur College, an
M.A. in mathematics and an M.S. in planning from The
Pennsylvania State University, and a Ph.D. in
information technology from George Mason University.
Dr. Pfleeger is a member of the ACM, IEEE Computer
Society, and Computer Professionals for Social
Responibility.

Joseph C. Fitzgerald, Jr. is a member of the Software
Metrics Project at Contel Technology Center, where he
does research and development on software metrics.
His currenW assignment includes evaluation of software
metrics lools and the construction of a metrics toolkit for
distribulon throughout the corporation. On previous

119 9th Annual Notional Conference on Ado Technology 1991

A Distributed Compilation Environment - Lessons Learned

Dr. Donald Gotterbarn

East Tennessee State University
Johnson City, Tennessee 37614-0002

distributed parallel Ada compilation system on aSummary: network of computers was developed. Tests onThis paper is a report of some lessons learned this system using small to medium size (1,000 to
about Ada and Ada compilation while doing 50,000 lines of code) Ada programs have shownresearch on metrics for a distributed Ada various levels of performance improvement over
compilation system. Among the items discussed sequential compiles.
are: standard test suites for Ada programs,
exceptional data structures that slow compilation
time, the validity of the line of code metric, and This system reduces elapsed compilation time by
the lines per minute standard for compilation performing parallel compilations of different
efficiency. Some results have significance for the ccnpilation units and by distributing theway we write Ada code and for the types of ccmpilation across processors. The system
software engineering metrics that are appropriate automatically distributes the compilation workload.
for Ada. The system first builds an order of compilation file

that is used to create a module dependency graphto schedule the order of compilation. All
BACKGROUND compilation units with no compilation

dependencies are distributed to available network
nodes and compiled. Only components with allMany Ada projects underway today require their dependencies compiled can be compiled in1,000,000 to 5,000,000 lines of code. Programs of parallel. The compilation works its way up a

such size and complexity consume the limited dependency tree like the one in Figure 1 as leafresource of the CPU during compilation. The components are compiled. Component F 'withs'
compilation speeds for Ada compilers for a 1750 components A and B, so F cannot be compiled
processor have varied from 859 to 40 LPM (lines until A and B are compiled.
per minute).' This means that in the best case
(859 LPM) 1,000,000 lines of code would take
19.4 hours of CPU time and in the worst case it Ada
would take 416 hours (17.3 days) of CPU time. Program
The impact of recompilation in an Ada
development environment can be very significant.
Though Ada does allow the division of a program
into small compilation units, massive
recompilation can result from even a small change F G
to a single module on which higher level packages
depend.

The ways to reduce this compilation time range ABD'1
from buying only the fastest hardware to using
smart compilation techniques.' To reduce the total
compilation time of large (more than 1,000,000 Figure 1 Dependency Tree
lines of code) embedded Ada programs, a

9th Annual National Conference on Ada Technology 1991 120

When a cmnpilation unit has all the segments it is 1 2 3
dependent an compiled then it becomes a candidate
for conilation. Four Low Level Computer FS C F C G
Software Components (LLCSC's) manage this M M
process. The four LLCSC's serve the following
functions: the interface builds a dependency graph
and determines when the compilation graph has
been completed, the router (R) following a R C E
scheduling algorithm decides which processor is M M
assigned to do each compile, the server (FS) 4 5 6
manages the workload on the nodes and the
compile manager (CM) builds and manages
detached processes to do Ada compilations. The Figure 4 Units A,B,& D Are Compiled
choice of which network nodes to use for the
distributed compilation and where the LLCSC's Figure 4 shows the state of the system, when files
reside can be determined by the user before A, B, and D have finished compiling, and files F
starting the compilation. and G were started in their place. Node 5 remains

unused while waiting for the availability of a
Figure 2 represents a network with six nodes on an compilation unit that has all its dependencies
etheret and the LLCSC's on each node. successfully compiled.

1 2 3 This illustration of how the system works also

FS C Cshows one of its weaknesses, namely, depending
M M on the order of compilation and the time it takes

I [for a unit to compile, it is possible for one or more
processors, like G, to be idle. The dependency
relations between the Ada compilation units has a

C R c direct effect on the efficiency of the compilation in
M M a distributed environment.

4 5 6 Research was done: to develop tools to predict
which Ada programs would take a long time to

Figure 2 Distributed Compilation System compile on this system and to develop metrics to
predict the compilation time of large Ada

When the program in figure 1 starts its compilation programs. The results would be used to improve

on this system, the files with no dependencies are decisions about distributed compilation

distributed to the available compilation slots as configurations for different Ada programs. They

shown in Figure 3. also would be used to determine the feasibility of
doing multiple parallel compiles on the system.

1 2 3 This paper is a report on some lessons learned

FS C Ac B about Ada and Ada compilation as a result of this
A B research and not a report on the direct results of
EN Ithis research project.

General Aproach

SD R l E The initial plan had two parts. First, we wanted to
find those factors which impact the compilation

4 5 6 time of individual Ada programs compiled this

Figure 3 Initial Configuration system and we wanted develop a method that could

121 9th Annual National Conference on Ada Technology 1991

predict the compilation time of a particular generic declaration. The PIWG tests did not cover
program before its compilation on the system. many of the cases we wanted to test, such as
This required the development of metrics for the enumeration types, float arrays, and case
compilation time that are based on a static analysis statements, so we extended the Z tests in two
of the source code. Metrics for the overhead time directions (Samples of these additions are in the
of the system configuration on which the program appendix). Many of the standard test suites do not
will be compiled were needed. The second part include adequate tests for compilation time. The
was to extend to multiple distributed simultaneous emphasis of these test suites is on execution, for
compilations on a single hardware configuration example, 'For loop' testing procedures only vary
the metrics discovered for the distributed the number of iterations of the loop, which has
compilation of a single Ada program. almost no effect on compilation time. The failure

to include the compiler directive Pragma, is a
The results of these steps would be implemented in serious deficiency in these tests.
a program that scans the source code to derive the
metrics and models the parallel compilation Linear Growth with Size
process.

Most of our timing tests produced a smooth linear
Individual Packafe Comnilation growth in compilation time as the metric increased,

indicating that any one of the metrics could be
The first part of the research plan--develop used to give a reasonable indication of compile
measures for compilation time predictions--was time. The timing results of using lines of code or
founded on several presumptions. These included: data structures were predictable. There were,
there are elements of the Ada language that can be however, some significant anomalies. When
timed; these elements can be processed in a way dealing with initialization of integers, floats and
that simulates the distributed complexity of the enumerated variables, the increase in compilation
system and the complexity of the modeling process time (represented vertically) was directly
was manageable. proportional to the increase in the number of

elements. The slopes of the types tested were
The frst step was to examine different elements of similar. Figure 5 shows the results for integers,
the Ada language and study their compilation floats and enumerations.
times. We carefully noted features of the language
that generated anomalous compilation times. A
group of standard Ada test programs was used in Initializing Variables
this part of the research. ACEC programs were
used and PIWG Z-tests Z0001 IO-Z000315 were
used. We gathered the timing for these programs ...
and related them to several standard metrics --

lines of code and language structures. Because .
most of these tests were done in an operational
rather than a controlled environment all timings ,......
were run at least four times. The timings used in
the calculations were based on an average of these
runs. There was less than a 10% error.

Results

Test Suites

The PIWG tests are limited because they primarily Figure 5 Initializing Variables

focus upon execution benchmarks rather than
compilation. The Z-tests (ZOO01I 0-Z00315)
include: integer arrays of 1000 elements and

9th Annual National Conference on Ada Technology 1991 122

When testing array initializations the slopes were
consistent as the numbers of variables increased, Ada Constructs

but the mode of initialization of the array -1,.0.0. .,

significantly changed the angle of the slopes. The

compilation time for arrays that either did not I., epo

initialize their elements or initialized all positions
in the declaration, increased gradually as the
number of elements increased. Initialization of
elements by position in the declaration also
increased slightly in compilation time as the /

number of elements increased. The compile time
for initialization by name, however, in either the /
body or the declaration increases significantly as
the number of array elements increase. /

Large Integer Arrays
Different Initializations

Ti"-
PS - khuI .h 1

.

---I ...
,IJ. I"a .

-..-- =

baod. --

.S.., ..-/s.., E

Figure 7 Ada Constructs

Oerator Counting

,,, ---------------- Although operator counts are used as a metric for

"hads. of Array Elemnts the difficulty or amount of time needed to write a
program, the same metric cannot be easily used as

Figure 6 Array Initializations an indication of compile time. We can see from the
sample in figures 5-7 that there is a significant

The timings for case statements and for loop difference in the compilation times of different
statements produced linear growth. The only operators. It would be a mistake to treat them all
problem encountered for case statements was that asithyadaimlrwgt.Teueo

the VAX Ada compiler no longer optimizes case opertor had a i s weight. mpe e ach

statements that exceed 100 cases. Surprisingly, operator counting in Ada is very complex. Each

overloaded procedures produce a linear growth out operator must be assigned a different weight

to about 250 overloaded procedures. After 250 according to compilation time; but first we mustto aout250oveloaed poceure. Ater250 decide what to count as an Ada operator. Ada's
procedures the growth is exponential and then it is dcd htt on sa d prtr d'
prcdurs ath roth is000 oexpondentid ens. unique capabilities such as overloading operators
vertical at about 1,000 overloaded procedures. and generic instantiations makes it difficult to

In most cases .,ie compilation time for different apply operator oriented metrics. Not only is there
elements in the language increased as the number a difference between operators, but our tests
of elements being compiled increased. The rate showed a significant difference in the compilation
difference in the rate of increase between the times for different types. Instantiations of a generic
elements points out the inequality of operators and integer were quicker than instantiations of a
operands from the point of view of the compiler. generic floating point types. The range and
This result raises serious questions about any accuracy of the instantiated types also had a direct
metric, like Software Science that treats operators effect on compile time.
and operands equally.

123 9th Annual National Conference on Ado Technology 1991

i Consistency Across a
Machines

In testing lines of code as a compilation time

metric, we used the standard of counting non-
comment, non-embedded semico:,ns as lines. We 1-
found lines of code produced a relatively consistent
metric. Packages with the similar numbers of code
lines took approximately the same amount of time
to compile. There were two interesting results here.

The exceptions to this pattern were similar to the 1

exceptions to the patterns of the compilation time's
linear growth with linear growth in the quantity of
a data type's elements. That is, we had anomalous
results when we looked at elements unique to the .
Ada language. For example, the compilation of
two line generic instantiations took as long as the u

compilation of 900 to 1,200 LOC packages that
had no generic instantiations. U * * ,

Lines of Code vs. Compile Time " 0

20M-hin. S. KISO * S C 0 4 4 4 N I I K L ,

ISO Coup& T kisd119

170s'So

150' Figure 9 Consistency Across Machines
00 , Compiler efficiency- LCPM

13 Many compilers give a 'Lines of Code Per Minute
0 (LCPM)' statistic at the end of a compiler listing.

,o , Using this as a measure of compiler efficiency is
40 * misleading. The initialization of a) a real array of
b0 50,000 elements by name in the declaration takes

or .considerably longer than the initialization of b) a
a 0- 0 1 1 25 "real array of 5 elements initialized by name in the

Urns of Cot. - Semod Contt
a P.... °- declaration. The LCPM for a) is 2 while the LCPM

Figure 8 Lines of Code & Compile Time for b) 200. The compiler is not operating less
efficiently in case a), the compiler is simply doing

We had to look at compile time on different more work per line and it is working as efficiently
machines. One useful result here was a proof that as in the 5 element initialization. To make the
compilation time is directly proportional between LCPM metric useful, the size of the operators and
machines. For example, all test programs compiled which operators are being compiled must be
on a DEC 3500 took approximately 65% less time considered. LPM is a misleading metric because
to compile than they did to compile on a it does not reflect the number and type of elements
MICROVAX. This has a testing advantage in that compiled.
all compile test do not have to be run on all
machines. The timing for different machines can
be easily determined by determining the ratio of Compile Times are NOT additive

the difference between the two machines. We
compiled the same set of Ada packages with 2 to The next step was to derive a formula to calculate
2,800 lines of code on two machines. The slopes the system's overhead time in a distributed
for compile times for this sets of packages on compilation. When calculations for sequential
different machines is congruent. compiles were made using predicted timings for

9th Annual National Conference on Ada Technology 1991 124

progrMs containing multiple packages, it was each case the combined file compiled in less time
shown that the total times for compilation were than the combined total time for the two separately
less than the total of the combined times for each compiled packages.
of the compilation sub-units in the program. This
time savings was attributed to reduced paging of
the Ada compiler between the compilation of sub- There were several bi-products of this work. It
units. This reduction was consistent so metrics was shown that an increase in page size shortens
could be developed to take account of it in our compilation time, even for small programs. PIWG
calculations. Z-test did not cover several compilation boundary

conditions. There are some programming
Separote Files suggestions. Given the results of our analysis of

array compilation timing, as the number of array
elements increases, it would be better in terms of"A compilation time not to initialize by name. If very
large arrays are initialized, it may appear that the
compilation has slowed considerably because the
compilation time is sometimes reported in lines

.... compiled per minute. This metric is misleading
because it does not reflect the number of elements

3] being initialized. If two arrays were initialized
with one having 1/10th the number of elements as

. were in the large array, then using lines per minute
V//// it would look like the second compile were more

ar M9/ ... efficient. The relationship between compilation
,o,0 o,0 A 20a500 '® &' times for the same program on different machines

al Am - c'] A i" is very important. The proportional time for

FI~gure 10 Separate Compilation Times compilation is consistent across different machines.
Given a single set of compilation times for a large

Combined in One Z~ie number of programs, one can easily predict a
programs compilation time on another class
machine. Determining the compilation times for

/ two or three programs on the new class of
,- machines will yield a proportional relationship to

the compilation times on the other class of
machines. From this ratio, the compile times on
the new class of machines can be predicted.

3.

10*100 20 200 30 300 Do 'OW0

Figure 11 Combined Package Times

The tines for packages compiled as separate files
are shown in Figure 10. The timing results of
combining these packages together into a single
file before compilation is shown in Figure 11. In

125 9th Annual National Conference on Ada Technology 1991

APPENDIX
ZTESTS. PIWG PROGRAMS ZOOOlIO - blocks

Z000315 Pblocks that define & raise exceptions
procedures

Subect: packages
Descrtion: tasks
iz.Iecone 20, 50, 100, 200 blocks
Size, Item counted: 10, 20, 50, 100 blocks

10, 20, 50, 100 procs
Progrm 200 packages

collection of various packages 200 tasks
24 pkgs., 2907 lines

Overloading
all initialized to I in declaration 250 types and procs

individually initialized in declaration
100, 200, 500, 1000 variables Predures

declarations onlyInteger arrays 10, 20, 50, 100 procs
initialized by name in body

100, 200, 500, 1000 array elements Packages
package with one procedure declarationChained access types package with one rename

type_(n) is access type-(n-1); 10, 20, 50, 100, 200 pack.
in private part 10, 20, 50, 100 pack.

100, 200, 500 types
Generics

Null orocedures generic procedure declarations
procedure declarations and bodies 10, 20, 50, 100, 200 procs

100, 200 procs

Instantiations
instantiating INTEGERIO(INTEGER); X TESTS, EXTENSION OF THE PIWG Z-TESTS

100, 200 new pack. Subject:

Tasks Description:
specifications with 2 entries each Size, Item counted:

10, 20, 50, 100 tasks
FloatsRenamgsall initialized to 1 in declaration

individually initialized in declaration
chained procedure renames no initialization

100, 200, 500 procs 100, 200, 500, 1000 variables

With, Use Float arrayswithing TEXTJO initialized by name in body
withing & using TEXTjO initialized by name in declaration

100, 200, 500 withs initialized all positions in declaration
100, 200, 500 with, use initialized by position in declaration

no initialization
100, 200, 500, 1000 array elements

9th Annual National Conference on Ada Technology 1991 126

EMicroVAX l's, and DEC 3500's. The other

3 & 12 symbols system, at The Wichita State University consists of

3 & 12 symbols, 1 type several VAXSTATION 3100's and a DEC 8650.

3 & 12 symbols, I type,
individually initialized in declaration

100, 200, 500, 1000 types 'Eys, Carlene "Ada Distributed, Parallel
100, 200, 500, 1000 variables Compilation," 1988
100, 200, 500, 1000 variables

CTichy, Walter F. "Smart Recompilation," ACM
Transactions on Programming Languages and

3 options plus "others" Systems. Vol 8. No. 3. 1986. R 273ff
10, 20, 50, 100 statements

EQTr
loop I..l0 with I assignment statement BIOGRAPHICAL INFORMATION

10, 20, 50, 100 loops
Educated at the University of Rochester, Dr.
Gotterbarn taught for several years at such schools

Z-PLUS TESTS, EXTENSION OF PIWG as the University of Southern California and
Z-TESTS Dickinson College. He has also worked as acomputer consultant. Among the software projects

he was responsible for were a nationwide videotex

Subiect: system, several database systems for the U.S. Navy
Descrivtion: and the Saudi Arabian Navy, and an interactive

Size. Item counted: crime reporting database. He is currently at East
Tennessee State University where he teaches

ntegers software engineering courses, data communications,
no initialization and database. As a Visiting Scientist at the

100,200, 500, 1000 variables Software Institute, he developed educational
5000, 10000, 50000 variables materials for software engineering. His current

research on performance prediction for a
Integers arrays distributed Ada closure was supported by a

initialized by name in declaration contract with Boeing Military Airplanes.
initialized all positions in

declaration
initialized by position in declaration
no initialization

100, 200, 500, 1000 array elements
5000, 10000, 50000 array elements

Constraints

The system investigated is the Ada Distributed
Compilation System running on a VAX Cluster at
Boeing Military Airplane (BMA), Wichita Kansas.
The operating system used for this project is DEC
VMS 5.1 and the Ada compiler is VAX Ada 1.5.
The hardware systems on which tests were
conducted consist of two distinct clusters. One
cluster, at BMA, contains VAXSTATION 3100's

127 9th Annual National Conference on Ada Technology 1991

INCREMENTAL OPERATIONAL SPECIFICATIONS
FOR THE VERIFICATION OF ADA PROGRAMS

William Howden
Bruce Wieand

Department of Computer Science and Engineering
University of California, San Diego

Abstract: Our approach to verification involves the the development process, this may not be a problem
use of analyzable specifications embedded in pro- since a programmer can remember connections be-
gramming language comments. The specifications al- tween specifications and a program. But the loss of
low programmers to add information to a program information can be detrimental to program mainte-
that is either difficult or impossible to extract from nance. Comments help the situation by allowing the
the program itself. Experimenting with a heavily programmer to retain pieces of the specification in
tested operational flight program written in assembly the source code. Additionally, comments allow the
language, we established the viability of our method programmer to document facts known and assump-
by detecting several errors. We are currently extend- tions made about the state of the program during the
ing our method to the Ada programming language. coding process. However, because the coding process
Ada introduces the potential for errors at different is a human process, it is subject to errors, and the
levels, and we have proposed extensions for handling pieces of information in the comments may be incon-
some of these. The Ada analyzer is currently under sistent.
development and will be tested on a large production We have developed a simple specification lan-
Ada program. As we experiment with the Ada an- guage which allows programmers to add specifica-
alyzer, we plan to add capabilities including timing tions to the comments portion of a program. Our
analysis, the automatic generation of specifications, specifications are termed "incremental operational
and partial code generation from specifications. specifications" because they represent pieces of in-

formation that are added over a period of time and
because they refer to the state of the program at var-
ious points on its execution paths. The specifications

I. Introduction are in the form of assumptions and assertions. As-
sumptions document facts about the program that

The software development process can be viewed the programmer assumes to be true, and assertions
as one of translation from concept to requirements, document facts about the program that the program-
from requirements to specifications, and from specifi- mer knows to be true. The assertions and assump-
cations to source code. Each step involves the trans- tions are inserted in the program at the locations
lation of one description of an abstract object to an- where the facts are known or are assumed. Verifi-
other. Verification is typically defined as the checking cation consists of traversing the execution paths and
for completeness and consistency among the various checking the consistency of the assumptions against
descriptions. We are concerned with the verification the assertions.
of programs and specifications. The approach we have developed is called QDA

In typical development environments, the tran- for Quick Data Analysis. Section 2 briefly overviews
sition from specifications to source code is special, the QDA approach. 1 We have tailored QDA into a
because it is at this point that the abstract object system called QDA2 for analyzing AYK-14 assem-
description moves from the domain of human under- bly language programs. Section 3 talks about our
standability to machine understandability. In mak- experience with QDA2.2' We are currently extend-
ing this transition, information is lost or obscured ing our approach to Ada in a system which will be
in the formalism of the machine's language. During called QDAA. Section 4 addresses some of the diffi-

9th Annual National Conference on Ada Technology 1991 128

culties in taking QDA from assembly to Ada. Sec- change. For example, the variable GWDRG2 may
tion 5 presents the modifications we have planned for represent the stage 2 drag curve for a particular
QDAA, and section 6 outlines our thoughts on future weapon throughout the execution of a program. This
extensions. fact is asserted with the following type specification.

! type[GWDRG2] iss Drag.Cr.Stage.2
2. The QDA Approach The word "type" is intended to represent a much

The underlying concept in our approach is the as- more specific data type than the integer and real data
sociation of an object with properties. Objects may types of conventional programming languages.
represent a wide variety of things such as program Assertions and assumptions are associated with
variables, program locations, and abstractions. Prop- the program locations at which they appear. Rules
erties are characteristics of objects which describe and type assertions are associated with the entire pro-
their state. For example, a property of a program gram and appear in data definition files. In addi-
variable could be "set", a property of a task entry tion, there are input and output specifications which
could be "called", and a property of the abstract ob- may appeu at the beginning of subroutines and are
ject 'landing.gear" could be "down". There are three treated both as assertions and as assumptions. Dur-
ways of stating the association of an object with its ing the analysis of a particular subroutine, its input
properties: is, iss, and nis. If "x" is an object, and specifications are treated as assertions at the begin-
"a" is a property, then "x is a" means that x has ning of the subroutine and its output specifications
property a and possibly other properties, 'x iss a" as assumptions to be verified at each return point.
means that x has property a and no other properties When one subroutine is called during the analysis of
("is and only is"), and "x nis a" means that x does another subroutine, the roles of the input and output
not have property a. Specifications are built from specifications are reversed. At the point of the call,
these atomic relationships using logical connectives. the input specifications become assumptions and the

Specifications are either assertions or assump- output specifications become assertions.
tions. An assertion is a formula preceded by a "!" Verification is accomplished in three passes. The
symbol, and an assumption is a formula preceded by first pass creates an abstract program representing
a "?" symbol. The formula parts of specifications are the division of the program into subroutines and the
either rules or sets of atomic relationships connected control flow within each subroutine. The second pass
by "&" symbols (conjunction) and "I" symbols (dis- traverses each path in the abstract program and cre-
junction) in disjunctive normal form. A rule consists ates a finite state table in which each state reflects
of two formulas separated by a "->" symbol with re- the assertions encountered along paths through the
strictions. The restrictions are that disjunction is not program. The third pass attempts to verify each as-
allowed in the rule's left side, and its right side con- sumption with respect to the states at the location
tains only a single atomic relationship. The following of the assumption in the abstract program.
are examples of specifications.

3. Experience with QDA2!start is called

? z iss set Our first analyzer, QDA1, was an experimental
t x.bitl is I -> landinggear is down analyzer which we used to develop our ideas.4 From

that came QDA2 which was briefly described in the
The intent of the first specification is the assertion preceding section. QDA2 was used to verify parts of
that a task entry "start" has the property "called", the operational flight program (OFP) for the Navy's
the second is the assumption that a variable "x" has AV-SB. The OFP consists of roughly 70,000 lines of
the property "set" and no other properties, and the code. The majority of the code is AYK-14 assembler,
third is the rule which means that whenever a vari- and the rest is CMS-2. Approximately one third of
able "x.bitl" has the property "1", the abstract ob- the program contains data definitions, and the other
ject "landing.gear" has the property "down". two thirds contains about 650 subroutines. The pro-

The above properties are all examples of what we gram is well documented. In fact, the design of the
call d namic properties. Dynamic properties may QDA2 specification language is partially based on the
change during the execution of a program. Ob- structure of the comments. Take, for instance, the
jects may also have fixed properties which do not following code fragment.

129 9th Annual National Conference on Ada Technology 1991

LK RB.GWDRG2 PT TO DRAG CURVE 2 An example of a documentation error involved an
(h G FOR GWSDC) anomaly between the sine and cosine of an angle. The

JLR R4,GWSDC STORE DRAG CURVE 2 data definition contains the following variable with
QDA2 comment.

In this fragment, register R,8 is loaded with the ad-
dress of a weapon's stage 2 drag curve table in prepa- VRBL NHPCBS A 16 S 16 P 0
ration for a call to GWSDC which stores a drag curve . SIN HARP AIG BST
in it. The comment at the first instruction indicates . #m type [NHPCBSJ iss
the programmer's assumption that GWDRG2 is a Sin.Harp.AngBst#
pointer to the stage 2 drag curve. The QDA2 speci-
fications for this code fragment are shown below and A usage of this variable in the program with the
are enclosed in "#" symbols. QDA2 comment that caught the error is shown next.

LK RS8,GWDRG2 . PTR TO DRAG CURVE 2 L R15,NHPCBS . COS HARP ANGLE BST
* (ARG FOR GWSDC) " #? type[NHPCBS] ias

* #? type[GWDRG2] iss CosEarp-Angst#
Drag.Crv.Stage.2# SU R15,DDSHRP . SIN OF HARP ANGLE

S 8! R8 isa GWDRG2# • # ? type[DDSURP' ins
JLR R4, GWSDC STORE DRAG CURVE 2 Sin.Harp.Ang#

The first comment specifies that the type of GW- In this case, the usage of the variable NHPCBS was

DRG2 is the stage 2 drag curve. The second is used correct in the program, while the original comment

to indicate that register R8 now contains the value of was wrong. Although some would say that this is

the variable GWDRG2. not really an error, we maintain that the detection of
these kinds of errors is critical for the maintenance ofAnalysis of the AV-8B program revealed two gen-

eral kinds of errors: coding errors and documenta- the program.

tion errors. An example of a coding error concerned
the use of the two-argument root-sum-square routine, 4. Extending QDA to Ada
MDRS2. The error was the assumption that the re-
turn value from MDRS2 was in a single register when We are currently extending the QDA philosophy
actually it was in two registers. The relevant portions to Ada in a system called QDAA. Parts of Ada al-
of the program with QDA2 comments is shown next. low easy extension of QDA2 and other parts are more

difficult. Global data can still use the type specifica.
JLR R4,DRS2 . ROOT SUN SQUARE t ions of QDA2. Sequential and branching statements

* RESULT IN R2 (including if-then-else, case, and loop) can still be
loP . #? R2 iss Root.Sum.Sq# modeled by the finite state table approach of QDA2.
LR R3,R2 . PLACE ROOT IN R3 And subprograms can still use the input/output spec-

ifications for their interfaces. The parts of Ada which
require modification to the QDA2 approach are con-
text clauses, block structure, parameters, overload-

NDRS2* . #output: ing, task synchronization, exceptions, and generic
R2 ins Root.SumSq._MSB & units. These are discussed below. The following sec-
R3 iss Root.Sum.Sq.LSB# tion presents some specific enhancements to QDA2

for dealing with the problems.
At the point of the call to MDRS2, the pro- One of the basic problems is introduced by the
gram state was modified by adding the property free format of Ada programs. In AYK-14 assembler,
"RootSumSq.MSB" to the object "R2" and the the format was fixed, and associating QDA2 specifi-
property "Root.SumSq.LSB" to the object "R3". cations with program instructions was easy. In Ada,
When the analyzer tried to verify the assumption at comments can appear between any pair of lexical ele-
the NOP instruction, it failed. (The NOP instruction ments. This has necessitated changes in the structure
was inserted by us to emphasize that the assumption of the abstract program so that QDAA specifications
is associated with the results of the call.) can be associated with parts of statements. These

9th Annual National Conference on Ada Technology 1991 130

changes are invisible to the programmer, however, rors such as deadlock, race conditions, infinite waits,
and no enhancements to the QDA2 language are re- hung rendezvous, and order of elaboration, entry
quired. calls, and termination. The naive approach to some

Context clauses allow a programmer to use ab- of these problems would be to analyze all possible
breviated names in one module to refer to objects in executions of tasks. The argument for this approach
another. Working under the umbrella of a context would have to include limiting the size of tasks and

clause, the programmer is free to ignore the prefixes the number synchronization points. Instead, we in-
of expanded names. In order to allow the program- tend to provide techniques for specifying in one task
mer to use names in QDAA specifications that re- what is assumed to be going on in another. For in-

fer to identical names in the program, we have to stance, suppose that task A waits on entry 1 before
associate the names in the specifications with the waiting on entry 2. The naive approach would spec-

program's expanded names so that the correct prop- ify this condition in task A and check that no execu-
erty lists are accessed. This association demands a tion could lead to entry 2 being called before entry

finer degree of program modeling than QDA2 has. 1. Instead, we assume that the programmer is fa-

In QDA2, the objects in the specifications are linked miliar with the task interaction design, and we will
to program objects only in the mind of the program- provide facilities for documenting this knowledge so

mer; the analyzer does not correlate objects in the that all possible execution sequences don't have to be
two domains. In QDAA, the analyzer will require checked.
some degree of correlation. In fact, solutions to all Exceptions cause relatively non-structured trans-
of the difficulties introduced by Ada involve a closer fers of control between frames. What is required is
relationship between objects in the program and ob- the capability to specify the characteristics of excep-
jects in the specifications. tional conditions. The characteristics that must be

The important implication of block structure is specified are whether a frame can raise an exception

the dynamic scope of program names. This allows and whether a frame can handle and/or propagate

names defined in an inner scope to hide names in an exception. QDA2 interface specifications will be

an enclosing scope. Handling this in QDAA requires enhanced to do this.

changes in both the abstract program and the finite Generic units allow parameterized packages. This

state models of the program. The abstract program introduces problems similar to the problems with

has to reflect scope changes, and the process of build- overloading and context clauses. The solution is also

ing the finite state table has to use this information similar. One key additional enhancement requires the
to access the correct object. instantiation of specifications to match the instanti-to acessthe orret obect.at ion of generic units.

The subroutines in AYK-14 assembler pass pa-

rameters either through registers or global data. and
the parameter names are identical in both the call- 5. Specification Enhancements for Ada
ing and called subroutines. Ada parameters require Extensions to the QDA2 language have been pro-
binding formal and actual parameter names so that posed which solve some of the difficulties mentioned
the correct property lists are accessed. This involves above and increase the flexibility of the specification
two problems. (1) If a parameter is mentioned in an language. Scoped specifications deal with the block
interface specification, its mode has to be consistent structure of Ada. Inference assumptions allow log-
with the specification. (2) The analyzer must be able ical implications to be checked. Parameter specifi-
to bind formal and actual parameters using either cations deal with subprogram parameters. Specifica-
named, positional, or default notation. tion instantiation applies to generic units, and CTL-

Ada's overloading feature presents the problem of like specifications are used for temporal aspects of
name resolution. The problem is similar to the block the language such as task synchronization and op-
structure problem. The abstract program must main- erator sequencing. Some of the properties of these
tain the structure of subprogram declarations (num- extensions are described below.
ber of parameters, type, order), and the finite state In QDA2, an assertion associated with an exe-
table building process must access this information cutable statement can only hold within the subrou-
to obtain the correct interface specifications. Over- tine containing the executable statement. In general,
loaded operators are treated the same way. this will be the case for QDAA with a few excep-

Tasking in Ada can result in synchronization er- tions. The Ada counterpart to the subroutine is the

131 9th Annual National Conference on Ada Technology 1991

secondary unit (i.e., the body of either a subprogram, this assumption at every point in the block where the
a package, or a task). An assertion associated with properties of the objects "char" and "available" are
an executable statement in a secondary unit can only changed.
hold within the scope of the object referenced by the In assembly language, parameters passed between
assertion unless that scope extends outside of the sec- subroutines are known by the same name in both the
ondary unit. In that case, the assertion can only hold calling and called subroutines. This makes it easy
within the scope of the secondary unit. An assump- to transfer properties across the interface. In Ada,
tion in QDA2 is only checked at the point in the pro- actual parameters are associated with formal param-
gram where the assumption occurs. In QDAA, we eters in subprogram and entry calls. So the inter-
have allowed assumptions to have scope so that they face specifications for QDAA have to be able to asso-
can be checked at every program location within a ciate formal objects with actual objects. During the
particular scope. The syntax of a scoped assumption analysis of a particular subprogram or entry, nothing
has the keyword "$scope" in between the assump- different is required for the interface specifications.
tion symbol and the formula part. For instance, the But when a subprogram or entry is called, QDAA
assumption in the following declaration makes connections between formal parameters and

actual parameters for those formal parameters which
available : boolean; are referenced by interface specifications. An exam-

-- #? $scope available is set# pie follows.

is checked at every point within the scope of the dec- procedure P (R : in real);
laration. A smart analyzer may realize that this as- -- #? $input R is positive#
sumption only has to be checked when the properties
of the object "available" change, but the semantics
of scoped assumptions are that they are checked at
every point within their scope. P(S);

In QDA2, a rule assumption is an assumption At the point where procedure P is called, QDAA
about the rules themselves, not the states at the point would associate the actual parameter S with the for-
of the rule assumption. For example, the assumption real parameter R. The assumption would check that

? x is a -> y ia b object S has the property "positive". In the case
where the actual parameter is an expression, say

checks to see if there exists a rule whose left side con- something like "S + T*2", QDAA would look for an
tains "x is a" and whose right side is "y is b". (Note abstract object named "S + T*2" with the property
that rules in QDA2 are restricted to atomic specifi- "positive".
cations on the right and no disjunction on the left.) An aspect of Ada that has no counterpart in as-
With QDAA, in addition to rule assumptions, infer- sembly language is genericity. For specifications that
ence assumptions will be used for checking logical im- apply to all instances of a generic unit, there is no
plications. For instance, the inference assumption problem. But for some generic units, the programmer

may want to assume different facts about the various
? char nis available => instances. Instantiated specifications solve this prob-

available nis true lem. If the QDAA keyword "$generic" appears in a
specification in a generic unit, then, when the generic

is true if and only if either the object "char" has the unit is instantiated, the keyword is also instantiated
property "available" or the object "available" does to the name of the generic unit. For example, sup-
not have the property "true". Inferencing combined pose that there is a "read" procedure in a "messages"
with scoping provides a powerful high-level assump- package with the following specification.
tion mechanism. For example, the assumption

generic
? Sscope char his available => ...

available nis true procedure read;
--#! msg is from-generic#

allows the programmer to make the assumption once ...
at the beginning of a block instead of having to state end messages;

9th Annual National Conference on Ada Technology 1991 132

Further suppose that the package is instantiated 6. Future Directions
twice as follows.

The current status of the QDAA project (as of
package redmessages is new November, 1990) is that we are finalizing the design

mossags(bluedevices.display); of the QDAA specification language, and we have
package blue-messages is new started work on the design of the analyzer. After this,

messages (red.Aevices.display); it remains to build the analyzer, experiment with it,
and upgrade it according to the experience we gain

The resulting specifications for the "read" procedure in classifying errors found in Ada programs.
in the two instances of the package would be the fol- The QDA2 analyzer has a hand-coded parser. We
lowing. currently have a lex/yacc specification for an Ada

parser that we are modifying to parse QDAA specifi-
procedure read; cations. We are also modifying the abstract program

-- #p msg is rom.ed.messages# structure and the finite state structure that QDA2
procedure read; uses in order to handle the free format and block

-- 8' msg is irom..blue.aessages# structure of Ada.

This allows the programmer to make assumptions For experimentation, we will use a production

about specific instances of the generic unit. piece of software with enough complexity to make hu-
QDA2 is geared towards data usage analysis and man comprehension difficult. We currently have two
Qis sged towardsldapaousgeianal y aogic.O n d possibilities. The programming team for the AV-8B

is based on simple propositional logic. One of the isexperimenting with an Ada implementation of a
QDAA extensions involves operator sequence analy- i xeietn iha d mlmnaino
sis. To allow reasoning which involves sequences of subset of the OFP. They have already defined the
siertrs, o allow rasing which inlvesinc of tasks involved, have selected the subset of functions
operators, we will base QDAA on a version of tem-

poral logic called Computation Tree Logic (CTL).5 to be included, and have developed the data inter-

The CTL temporal operators are AF, AG, EF. and faces for the packages representing modules from the

EG. For example, if 'T' is a QDAA formula, "AF(f)'" C.MS-2/AYK-14 implementation. The drawback is

is true at program location "p" if and only if "- is that the program is still under development. An-

true at some location on every path leading out of other option is the procurement of the flight control

"p". The other CTL operators have similar seman- program for a commercial aircraft.
tics. Their common property is that they all refer After experimentation, we expect to make en-
ts program paths leaving a particular program loca- hancements to QDAA. Some of the ones we are al-
tion. progae pahsd hen aopr tiar op ratoc- ready considering include a more interactive user in-
tion. W~e have added the complementary operators. terface, timing analysis, the automatic generation of

AP, AQ, EP, and EQ which refer to program paths tefcationg and the generation of

cntering a particular program location. With this set specifications. and the generation of partial code from

of temporal operators, we can concisely specify pro- specifications. QDA2 has a very simple user inter-
gram operator sequences. This is especially useful in face which simply prompts for source code files to
task interaction. For example, if it is required that analyze, analyzes them, and generates error reports.
the entry "putline" in a task always completes its An enhancement currently being made to QDA2 is to
rendezvous, then the following specification verifies allow the programmer to browse through the source
this. code and interactively insert specifications and ex-

amine the program states. QDAA will also have this

accept put.line; feature. Timing analysis will require the analyzer to

-- #? AF(put.ine is returned)# have arithmetic capabilities. We have avoided this
in the past because of theoretical complexity issues.

As another example, suppose that a task has a "start" But recently we have been working on a rudimen-
entry which should always be called first to initialize tary arithmetic capability that can be used for sim-
the task before any other entries are called. The fol- ple kinds of timing analysis. Automatic generation of

lowing specification placed at the accept statements specifications applies to assertions. Many assertions
for the other entries would verify this. can be derived from the code; in particular, oper-

ator events such as entry accept statements, entry
accept entryX; and subprogram call statements, and entry and sub-

-- 8? AP(start is accepted)# program return statements. Automatic generation of

133 9th Annual Notional Conference on Ada Technology 1991

assertions is desirable for two reasons. We found that 8. Reference Manual for the Ada Programming Lan-
the process of adding certain kinds of specifications guage, ANSI/MIL-STD 1815A, January 22, 1983.
to code can be tedious. The other reason is that
humans make errors in this process. We will deter- 9. AdaOFP Top Level Design Document, Rough
mine which kinds of specifications can be generated Draft, November 6, 1989.
from code and how useful they are. The QDA ap-
proach to program verification has focussed on the
programming and maintenance portions of software
development. The automatic generation of partial William E. Howden received the Ph.D. degree in
code from specifications is more of a design issue. Computer Science from the University of California
We feel that even as early as the design phase, QDA- at Irvine. He also holds master's degrees in both
style specifications can be written to reflect design Mathematics and Computer Science and a bachelor's
decisions such as the presence of data and/or sub- degree in Mathematics. Dr. Howden is a Professor
programs or the order of rendezvous points within a of Computer Science at the University of California
task. When the design phase completes, QDA design at San Diego. His principal area of research is pro-
level specifications could be used to generate library gram testing, an area in which has has written one
unit interfaces, book and co-edited two others. His current work is

on defect analysis, a technique for detecting the oc-
currence of errors in large, complex systems which

References are only informally and incompletely specified. He

1. W.E. Howden, Comments Analysis and Program- has written numerous papers on program design, pro-

ming Errors, IEEE Transactions on Software Engi- gramming environments, and man-machine interac-

neering, January, 1990. tion. He is on the editorial board of the IEEE Trans-
actions on Software Engineering and is a member of

2. W.E. Howden, C. Vail, D. Nesbitt, B. Wieand. De- IFIPS Working Group 10.4, Reliable Computing and

sign and Experimental Use of a Verification System Fault Tolerance.

Using Incremental Operational Specifications, UCSD
Department of Computer Science and Engineering. Bruce Wieand is currently working towards the
December, 1990. Ph.D. degree in Computer Science at the University

of California at San Diego. He holds a master's de-

3. W.E. Howden, D. Nesbitt, C. Vail, B. Wieand, gree in Computer Science from the California State

Verification of Complex Systems Using Incremental University at Fullerton, and a bachelor's degree in

Operational Specifications, to appear in Information Computer Engineering from the University of Cali-

Sciences, June, 1991. fornia at San Diego. He has been working in the area
of program testing in collaboration with Dr. Howden

4. W.E. Howden, C. Vail, R. Westbrook, B. Wieand. for 2 years and has co-authored several papers with
User Guide and Reference Manualfor the Quick Data him.
Analyzer (QDA), UCSD Department of Computer
Science and Engineering, Technical Report CS88-136, Both authors may be reached at the following ad-
November, 1988. dress:

5. E.M. Clarke, E.A. Emerson, A.P. Sistla, Auto- University of California at San Diego
matic Verification of Finite-State Concurrent Sys- Department of CSE, 0114
tems Using Temporal Logic Specifications, ACM 9500 Gilman Dr.

Transactions on Programming Languages and Sys- La Jolla. CA 92093-0114

terns, April, 1986.

6. Grady Booch, Software Engineering with Ada,
Benjamin/Cummings, 1987.

7. Ken Shumate, Understanding Concurrency in
Ada, McGraw Hill, 1988.

9th Annual National Conference on Ada Technology 1991 134

N-VERSION PROGRAMMING USING THE ADA TASKING MODEL

Don M. Coleman
Ronald J. Leach

Department of Systems & Computer Science
School of Engineering
Howard University
Washington, DC 20059

ABSTRACT A pioneering effort called "N-Version
Programming" (NVP) initiated during the

This paper focuses on the use of the 701s at the University of California at
N-Version Programming (NVP) technique for Los Angeles, was suggested as a possible
achieving higher levels of software technique for software fault-tolerance
reliability in an Ada programming ([1], [3], (5]). The technique is based
environment. Independent versions of an upon N-fold Modular Redundancy, which is a
algorithm are implemented as independent commonly used technique for hardware
Ada tasks; the Ada rendezvous model fault-tolerance. Another approach which
provides a natural mechanism for the received considerable attention around
sequencing and management of the NVP that time was called the Recovery Block
voting process. The paper describes the Technique [7). In this paper we do not
feasibility of using NVP to implement consider the Recovery Block Technique.
software fe,ilt-tolerance in an Ada multi-
tasking env..ronment. N-version programming is defined as the

independent generation of N (>l) software
modules, called "versions", from the same
initial specification. "Independent
generation" here means that programming
efforts are carried out by individuals or

1. INTRODUCTION groups that do not interact with respect
to the programming process. Wherever
possible, different algorithms and

During the last few years, there has been pogramming languages or translators are
increasing interest focused on program used in each effort. The intention with
development methodologies that promote the this method is to have as much
production of reliable software. The independence as possible between the N
traditional approach to reliability, different software implementations each of
"fault-avoidance", requires the software which constitutes a solution to the
components and their integration problem. The work of Knight and Leveson
techniques to be as nearly perfect (error- [6] raises some important points about
free) as possible. Efforts to enhance insuring that the actual versions are
reliability include improvements in the independent.
design, testing, and other phases of the
software development process. In spite of A concurrent programming environment is a
these improvements, experience shows that natural vehicle for the development of a
it is very difficult to produce error-free NVP fault-tolerant software system. We
software. With this in mind, a body of have, with Ada, a programming language
research has been aimed at the development which includes concurrency as a direct
of techniques for "software fault- construct within the language. This is
tolerance". These techniques use provided through Ada tasking and the
redundancy to provide an extra measure of communication between tasks is done using
reliability. Software fault-tolerance the Ada rendezvous mechanism. Within an
techniques, when used to complement the Ada program there may be a number of
emerging improvements in fault-avoidance tasks, each of which has its own thread of
methodologies, appear to offer a promising control. Hence, it is possible to match
approach to increased software the parallel nature of NVP with an Ada
reliability, syntactical form which reflects the NVP

structure.

In this paper we investigate the use of
Ada as a tool for production of fault-
tolerant software using NVP. In particular
we perform an experiment to determine the
overhead, measured in excess algorithm

135 9th Annual National Conference on Ada Technology 1991

execution time, associated with the N- Ada tasks are implemented within a single
version implementation. The paper (4] UNIX process and thus must share in the
provides a discussion about the resources that are allocated to a single
feasibility of the use of C for NVP in a UNIX process.
UNIX environment.

The only mechanism provided in Ada for
intertask communication is the rendezvous.
As explained in the next section, the
independent versions in a NVP scheme must

2. CONCURRENT PROGRAMMING communicate their results to an arbitrator
(voter) which has the responsibility for
synchronizing and selecting a "correct"

The basic notion in achieving fault- solution from among the N independent
tolerance using NVP is to have more than processes. Each of the N versions provides
one execution stream for the solution of an input for the "arbitration process" by
the problem. That is, the problem is a voter-initiated rendezvous. In a sense,
solved "concurrently" N independent times; one can consider the passing of parameters
results from these solutions are polled to between the voter and a task similar to
determine the common or overall solution, the passing of parameters between
In this sense NVP would seem to be well subprograms.
suited to concurrent programming.

Concurrent programming is the name given
to programming notation and techniques for 3. FRAMEWORK FOR THE NVP
expressing potential parallelism and for METHODOLOGY
solving the resulting synchronization and
communication problems [2]. In general, a
sequential program executes a list of The NVP methodology requires the polling

statements in strict order or until of the independent processes at

modified by the appropriate control intermediate points of the algorithm

construct. A concurrent program specifies called break points. At each break point

two or more threads of control (or the voter determines the "correct" state

sequential programs) which execute for the computation. The method for

concurrently. In the Ada language, threads determination of the "correct" state can

of control within a concurrent program are be as simple as a majority vote among the

called tasks; in the UNIX environment they tasks. Hence, correctness is really a

are known as processes. The actual consistency check; i.e., the most

execution of tasks and processes may be frequently occurring value at a break

accomplished by a variety of methods. In point becomes the "correct" state.
cases where there are multiple cpu's, Further, it is assumed that differences

processes may execute simultaneously or in between the tasks are not the result of

parallel; communication may be through a errors in the voter. Therefore, the voter
shared memory or a bus. In cases where should be fault-tolerant or subject to a

there is a single cpu, each Process Must formal proof of correctness; or it should

take its turn and it is called interleaved be developed from existing software

processing. In the discussion which components that are sufficiently tested to

follows, we have an NVP implementation in provide the highest level of reliability.

which N independent tasks are interleaved The number of voting processes is an open

on a single cpu. Even though these tasks question and is application specific; but

execute asynchronously, race conditions for certain real-time programs it appears

are not an issue as we use the Ada that the number will be small [4].

rendezvous for synchronization and
control. Note that an Ada implememtation The impact of the selection of break

in a UNIX enviornment, such as the one points on the methodology is not well-

that was used on this project, multiple understood at this time. Some ad-hoc rules

9th Annual National Conference on Ada Technology 1991 136

may be inferred in specific instances. For exception TASKING ERROR. Non-catastrophic
example, any change to a fundamental data errors can occur in numerical routines
structure is an ideal candidate for a because of the inaccuracies of floating
break point. The voter design includes point arithmetic. As we shall see, this is
strategies for dealing with different not an issue here because we do an exact
types of results; e.g., do numerical match with strings.
results have to be identical or simply
within a given tolerance; how are
character strings to be compared; what is
the most appropriate technique for 4. THE EXPERIMENT
performing the minimal number of
comparison tests between versions; what is The experiment examined NVP in the
the procedure for removing processes which instance of a program designed to emulate
gave consistently minority results; how to a desk calculator that could perform
proceed in the case of catastrophic arbitrary precision arithmetic. The
failure; and what to do when the number of versions of the algorithm was created by
consistent processes is below some minimal using modules encoded by differentnumber,s n o u e nc d d b i f r n

programmers. The desk calculators used a
stack for the storage of intermediate

The NVP scheme must be designed such that results. The contents of the stack were
the exceptional termination of a pointers to structures pointing to arrays
particular version or task will not lead of characters that represented the values
to the crashing of the total system of the operands of the desk calculator.
Otherwise, the fault-tolerance of the o e operans o erds c or.oveal syte ma b deresedby The operators and operands for thisoverall system may be decreased by problem were given in data files with one
addition of multiple versions. The pro w er n in d ie s theapprach s t minmizethecouping operator or operand per line. Thus the
approach is to minimize the coupling size of the data file (as measured by the
between the program modules. First, there number of lines) indicates the number of
is no coupling permitted between the activities of the stack since each operand
various independent versions. is pushed onto the stack and each operator
Communication exists only between the main requires stack access. Each version of the
driver task and the voter or between the algorithm was then modified to be an Ada
voter and the versions. In Ada, errors and task. The different versions of the
other exceptional conditions for which algorithms were then modified to have each

exception handlers have not been provided stack operation (push or pop) communicate

cause the termination of the task in which
the exception occurs. Hence, there is no the the value Pushed or popped to the

voter task. Thus each version of the
propagation throughout the NVP system algorithm was made into a task that
provided that the voter is designed to communicated with the voter. Since the
prevent any rendezvous with an aborted voter is another Ada task, communication
task. Furthermore, in Ada the proper use is done using the rendezvous mechanism. A
of the selective wait can provide a
mechanism for protection and control of driver task controlled the entire system.

the -domino" impact of the failure of a The development environment for this
single task. The voter can abort any task research was two UNIX machines running Ada
which it deems to be faulty. This compilers. The code was initially
determination is made when the task not
being among the majority respondents some preliminary version of AT&T Ada. This
predetermined fraction of the time. computer had 4 megabytes of main memory

and ran AT&T System V version 3.1 UNIX.
Protection against Catastrophic failure The versions of the algorithms were
due to an aborted version can be detected created by students in a very short period
in the calling task because the aborted of time. The students had already
version will generate the predefined implemented the same algorithms in C and

137 9th Annual National Conference on Ada Technology 1991

thus the short amount of time for The original motivation for this paper was
implementation did not appear to be the measurement of the overhead of NVP
unreasonable, when implemented in a modern, high-level

language that supports concurrency. We had
The original intent was to be able to use expected run times to be nearly linear as
the same data files that were used in (4]. a function of the number of versions, with
We ran into some problems when we had 6 the fixed constant so small that run times
versions of the algorithm, corresponding should have been nearly proportional to
to a total of 8 tasks including the driver the number of versions running as separate
and voter tasks. The preliminary version tasks, at least for large input files.
of the Ada compiler on the 3B2 did not What we found was quite different.
support the use of large data files;
indeed, the largest file that we were able Adding another version had only a small
to use was only 24 lines long. For this effect on the relative execution time.
reason, we transferred our work to a SUN Much of the computing time was spent in
3/60 running Verdix Ada version 5.5. The the overhead of the system for file access
code for the voter, main driver, and each and for execution of the voter task. The
of the versions was ported to the SUN 3/60 cost of N versions is always much less
and the experiment was repeated there, than N times the cost of one version. As
Even on the SUN, we were unable to use the outlined in [4], the overhead is roughly
large data files that were used in the defined as the additional time cost of
previous C/UNIX experiment when 6 versions running a NP system as opposed to running
(8 tasks) were run. We were able to run a single version.
the program on input files as large as
10,000 lines on the SUN when running the An implicit assumption about NVP is that
program in single-user mode. On the SUN the versions are independent; that is,
the executable file was 300 kilobytes and errors are unrelated. Knight and Leveson
the core image was approximately 500 ([61, [7]) have raised some questions
kilobytes. Files of size 10,000 lines or about the validity of this assumption
more caused problems with many tasks based on an empirical study. The possible
because the total limit per UNIX process errors in our experiment fall into one of
was set to 4 megabytes on the SUN and each three categories:
task was run as part of a UNIX task.

system errors caused by overloading
The relative execution times for the the Ada run-time system
experiment for the AT&T 3B2 and the SUN
3/60 are given in tables 1 and 2, logical errors in the voter
respectively.

errors in the individual versions
Table 3 contains information of a that are detected by the voter.
different type. It indicates the
percentage of times that the various The system limitation errors occurred when
numbers of versions agreed. This table is we exceeded the local storage of the Ada
relevant to a discussion of the utility of tasks. On one computer, we were limited to
NVP as a method for improving fault- 24 lines of input (with 24 breakpoints)
tolerance. The data in all three of these while on the other we could have as many
tables will be analyzed in the next as 15,000 lines (and thus 15,000
section. breakpoints) if we ran the program with

the operating system configured in single
user mode. This is far more restrictive
than the results in a similar experiment
performed in C using UNIX interprocess

5. ANALYSIS OF RESULTS communication instead of the Ada
rendezvous mechanism. The two experiments

9th Annual National Conference on Ada Technology 1991 138

were run on the same computers and thus in performing a context switch. This
the same UNIX environment. We expect that treatment of concurrency has a high
many of these system problems would be operating system overhead. Concurrency
alleviated, but wiuld not completely of Ada programs in UNIX is performed by
disappear, if some of the user-tunable the Ada run time system within the
operating system defaults were changed, context of a UNIX process. Hence the

operating system overhead of Ada
Errors in the voter did not occur during tasking under UNIX is much lower.
the experiment.

5. The Ada tasking model is
Errors in the versions occurred at various particularly appropriate for embedded
levels. It was generally the case that one real-time systems that often have only
of the versions was quite poor and that a run time system and no intervening
its presence caused a fairly high level of operating system. Thus the types of
disagreements between the versions, at results described here are portable to
least on some files. It is clearly useful non-UNIX environments.
to eliminate bad versions early in the
software reliability process. NVP can be 6. A distributed or parallel
applied to removal of versions, even if environment is more appropriate for NVP
formal specifications of system behavior than a sequential one.
are not available.

7. In a real software development
environment, programs are developed by
teams. Since some of our versions were

Observations assembled by using different
programmer's work, we were simulating a

1. Table 3 indicates that the NVP realistic development environment.
system will allow the program to
proceed with some assurance of
correctness in almost all cases. The
percentage of times that the entire 6. SUMMARY
system was in a state of fairly high
inconsistency was relatively low, N-version programming in Ada is relatively
especially for large input files, easy to understand as a high level

construct. In a single cpu UNIX
2. For some of the tested input files, environment, the overhead of additional
the method of NVP did not appear to be versions as tasks is not large because ofeffective, the lack of context switching between

application, processes. However, the system is quite
3. For this particular application fragile due to run-time limitations if
there is no need to execute more than there are many tasks or many versions. The
three independent versions to have a situation can be improved considerably by
99% chance that the program can proceed running in single user mode.
with consistency.

4. The timing results are different ACKNOWLEDGEMENT
from those reported in (4]. This is
primarily due to the manner in which
concurrency is implemented in C and Ada Research of Don M. Coleman was partially

on UN1X systems. Concurrency in C supported by the Federal Aviation

programs in UNIX is performed by having Administration and the Naval Surface

the different threads of control Warfare Center. Research of Ronald J.

running as different process, each of Leach was partially supported by the Army
Research Office.

which is controlled by the cpu

139 9th Annual National Conference on Ado Technology 1991

REFERENCES

1. A. Avizienis and J. P. J. Kelly, Design
Fault-Tolerance by Design Diversity:
Concepts and Experiments, UCLA Computer
Science Department, Los Angeles,
California 90024, USA

2. A. Burns, Concurrent Programing in
Ada, Cambridge University Press, 1985,
p19.

3. L. Chen and A. Avizienis, "N-Version
Programming: A Fault-Tolerance Approach to
Reliability of Software Operation", Digest
of the 8th Annual International Conference
on Fault-Tolerant
Computing(FTCS-8), Toulouse, France, June
1978.

4. D. M. Coleman and R. J. Leach,
Performance Issues in C Language Fault-
Tolerant Software, Computer Languages, vol
14, No. 1 (1989), 1-9.

5. J. P. J. Kelly, Specification of
Fault-Tolerant Multi-Version Software:
Experimental Studies of a Design Diversity
Approach, Report No. CSD-820927, UCLA,
Computer Science Department,
September 1982.

6. J. C. Knight and N. G. Leveson, "An
Experimental Analysis of the Assumption of
Independence in Multi-Version
programming", IEEE Trans. Softw. Eng., vol
SE-12, no. 1 (January, 1986), 106-109.

7. B. Randell, System Structure for
Software Fault Tolerance, IEEE Trans.
Softw. Eng., SE-1(1975), 220-232.

9th Annual National Conference on Ada Technology 1991 140

NUMBER OF VERSIONS

File one two three four five mix

1 1.00 1.17 1.36 1.53 1.76 2.06
2 1.00 1.39 1.64 1.78 1.91 1.90
3 1.00 1.18 1.41 2.06 1.74 1.92
4 1.00 0.95 1.20 1.29 1.75 1.60
5 1.00 1.08 1.31 1.41 1.56 1.76
6 1.00 1.27 1.30 1.49 1.75 1.82
7 1.00 1.23 1.59 1.67 1.44 1.75
8 1.00 1.18 1.29 1.71 1.55 1.69
9 1.00 0.79 0.94 1.34 1.09 1.24
10 1.00 1.14 1.42 1.50 1.69 1.88
11 1.00 1.17 1.01 1.21 1.40 1.58

Table I Relative Times for AT&T 3B2

NUMBER OF VERSIONS

File one two three four five gix

1 1.00 1.14 1.32 1.45 1.56 1.70
2 1.00 1.16 1.28 1.41 1.53 1.66
3 1.00 1.13 1.24 1.37 1.52 1.67
4 1.00 1.00 0.80 0.60 1.00 0.80
5 1.00 1.13 1.30 1.40 1.53 1.68
6 1.00 1.11 1.22 1.33 1.67 1.78
7 1.00 1.17 1.26 1.39 1.57 1.70
8 1.00 1.09 1.27 1.36 1.55 1.82
9 1.00 1.11 1.22 1.44 1.67 1.89
10 1.00 1.22 1.33 1.44 1.44 1.78
11 1.00 0.75 0.75 1.00 1.00 1.00
12 1.00 1.15 1.29 1.42 1.56 1.71

Table 2 Times for S UN 3

WEIGHTED SUMM4ARY (ALL FILES)
Number of NUMBER VERSIONS IN AGREEMENT WITH ANOTHER VERSION
vere'onn none two three four five six
2 21% 79%
3 1% 9% 79%
4 0% 9% 91%
5 0% 7% 93%
6 0% 9% 91%

Table 3 Percentages of Agreement

141 9th Annual National Conference on Ado Technology 1991

Concurrency in Ada and VHDL

Carl Schaefer

MITRE Corporation
McLean, Virginia

record types, task types, and fixed point types; VHDL has
Despite the fact that the VHSIC Hardware Description Language physical types and file types; and VHDL ranges are
has been heavily influenced by Ada, the languages have very characterized by direction (ascending or descending) as well as
different models of concurrency. Areas in which the languages bybouds.
differ are: basic notion of time (real time of day versus simulated,
elapsed time); the means by which execution of concurrent units is 2. Operator Overloading. Like Ada, VHDL provides for
coordinated (control flow versus data flow); degree of determinism; overloading of enumeration literals, operator symbols, and
and the mamer in which conflicts are resolved. subprogm names. The initial version of VHDL, VHDL 7.2,

provided overloading only for enumeration literals. During the
Introduction IEEE standardization process, enough reviewers thought that

full operator overloading was valuable enough to include in the
The VHSIC Hardware Description Language (VHDL) was standardized language (VHDL 1076).
developed under the auspices of the United States Department of
Defense. The requirement was for a language which could be used in 3. Scope and Visibility. VHDL's notions of declarative region,
the acquisition process to specify the behavior of an electronic scope of declaration, direct visibility (including direct
component, and could be used in the design process to specify the visibility achieved via "use" clauses), visibility by selection,
internal structure of the component. With descriptions of behavior hiding of declarations, and the mechanism for resolving
and structure in a standardized language, the government reasoned, overloading all derive directly from the corresponding Ada
procurement of replacement parts, insertion of new technology into notions.
old systems, and design of new components of great complexity
(100,000 gates) would be streamlined. Development of the language 4. Distinction Between Interface and Body. Like Ada, VHDL
and tools began in 1983. The first public version of the language, so- distinguishes between a construct that represents an interface
called VHDL 7.2 was released in 1984, and a set of tools (analyzer, (and is therefore accessible to other constructs) and a construct
simulator, and library manager) was delivered to the government that represents an implementation (and is therefore not
the following year. Subsequently, the Design Automation accessible to other constructs). VHDL parallels Ada in
Standards Subcommittee (DASS) of the IEEE Computer Society distinguishing package declaration from package body and
took on the task of standardizing the language. IEEE Standard 1076 subprogram declaration from subprogram body. In addition,
Ill appeared in 1987. Since that time the language has gained wide VHDL distinguishes the entity declaration (the external view
acceptance. At the 1989 Design Automation Conference, virtually of a hardware component) from an architecture body (the
all major players in the computer-aided engineering (CAE) market internal behavior or structure of the hardware component).
announced their intention to support VHDL. Since 1990, VHDL has
become a major factor in the field of design synthesis (automatic 5. Sequential Control Structure. VHDL constructs for sequential
derivation of a structural description from a behavioral control - if statement, case statement, loop statement, exit
description), even though VHDL was not originally required to statement, return statement, and procedure call statement - are
support design synthesis. similar to the corresponding Ada statements in syntax and

semantics.
While Ada and VHDL were designed to serve different purposes,
the syntax and semantics of Ada have influenced the definition of 6. Explicit Rules for Elaboration. Like Ada, VHDL has explicit
VHDL fron the earliest stages of the VHDL program. This rules governing the elaboration of declarations. While in the
influence is undoubtedly due as much to political concerns (both Ada LRM, the rules for elaborating a declaration are presented
languages are sponsored by the Department of Defense) as it is due together with the syntax and semantics of the declaration, in
to the tedual excellence of the design of Ada. Among the more the VHDL LRM, all elaboration rules are collected into one
important similarities are the following: chapter.

1. Data Types. VHDL's system of types is clearly derived from 7. Program Library. Like Ada, VHDL relies on the notion of a
Ada's. Like Ada, VHDL distinguishes the concept of a type program library and has explicit order-of-compilation rules
from that of a subtype; the type of a VHDL expression can be governing the order in which program units may be entered into
fully determined at compilation time. Like Ada, VHDL has the library. The following table show the correspondence
user-defined enumeration, integer, floating point, array, record, between compilation units in Ada and in VHDL (in VHDL,
and seus types. There are, of course, differences: there is no subprogram declarations and subprogram bodies are not library
VHDL parallel to Ada's type derivation; VHDL lacks variant units; the architecture body is a secondary unit):

9th Annual National Conference on Ada Technology 1991 142

Ada VHDL I P-1

package declaration package declaration bqin
package body package body Q <- S ater 20 ns;

gubprgram body (subprogram body) Q<P ato Ons;
subprogram declaration (subprogram declaration) ewoS,;
generic declaration ;
geniic in tiati The model would become quiescent at 70 nanoseconds (ns), at which

entity declaration time all three signals would have the value 0' and there would be

architecture body no future transactions posted on any of the signals.
configuration declaration Tim

Given the number of significant similarities between Ada and
VHDL, it is instructive to compare their approaches to concurrency. Ada and VHDL have very different concepts of time. In Ada, time
Section 2 of this paper gives a brief overview of the dynamic is "time of day; it refers to time that can be synchronized with
semantics of VHDL. Section 3 discusses the notion of time in the clocks in the real world. In VHDL, time is elapsed, simulated time.
two languages. Following this background, Section 4 discusses the The basic types that describe time in Ada are defined in package
majordiffenmces between concurrency in Ada and VHDL AdA and Standard and in package Calendar. Duration is a fixed-point type
VHDL versions of a simple client-server model are given in an defined in package Standard. Values of type Duration represent
appendix, seconds of real time. An Ada implementation must allow

representations of durations up to at least 86,400 seconds (the
VHDL Dynamic Semantics number of seconds in a day), and the smallest positive value of type

Duration that can be represented (DurationSmall) must not be
A VHDL model consists of a set of signals and a set of processes. A greater than 20 milliseconds. Type Time is defined to be a private
signal is a typed object that has a current value and zero or more type in package Calendar. The function Calendar.Clock returns the
future values, each future value proeced to become current at a current time, which can be converted into year, month, day, and
different time in the future. A process is a transform function; it seconds by the procedure Calendar.Split. Year, month, and day are
reads current signal values and outputs future signal values, represented by subtypes of Standard.Integer and seconds are
Processes are connected to each other by signals: the output from one represented by Standard.Duration. There are no Ada constructs
process may be the input to other processes; a signal may be input to that require expressions of type Clendar.Time, and only one
multiple processes and output from multiple processes. construct, the delay statement, requires an expression of type

Standard.Duration.
Execution of a VHDL model consists of repeatedly applying theExcuion cycl: aAda does not specify how the function Calendar.Clock obtains the
following Cycle: time of day. In particular, it does not require that

1. Determine the nearest time in the future at which any signal in Standard.Duration'Small be the same as System.Tick, the basic
the model has a new value (transaction) posted; call this time clock frequency of the computer system. However, it is dearly the
T. Advance the dock to T. intention that time in Ada is, in some sense, "real-world" time.

Thus (if we ignore pathological cases in which an Ada program
2. Update the current values of all signals having transactions at resets the system clock by means of a system call) the execution of

T. If this update involves changing the value of the signal an Ada program cannot influence the value returned by a call to
(that is, if the new value is different from the old value) there Calendar.Clock, and the Ada language does not define any way in
is said to be an event on the signal which the execution of an Ada program can determine themagnitude of the difference between two calls to Calendar.Clock.

3. Determine the set of all processes that are sensitive to any Furthermore, if two Ada programs running on the same processor
signal having an event at T. Run (in no particular order) all could simultaneoulsy call Clendar.Clock, the two calls would
processes in this set; as a result of executing these processes, new return exactly the same value; previous execution history (including
future values may be posted on signals. Each process will run the time at which execution started) would have no effect.
until it executes a wait statement.

In VHDL, type Time is defined in package Standard as a physical
Figure 1 is a graphic representation of the exection cycle. Execution type with implementation-defined bounds. A VHDL physical type
of the model continues until there are no transactions posted to occur is a scalar type; a value of a physical type can be represented with
in the future on any signal. The model is then said to be quiescent. a numeric literal followed by an identifier denoting a unit of
Consider the following very simple model: measurement. In the physical type definition, each unit of

measurement is defined to be some integral multiple of a base unit.
The base unit of Standard.Time is the femtosecond (10E-15 seconds),
whose unit identifier is "fs". Other units of type Time are the
picosecond (ps), nanosecond (ns), microsecond (us), millisecond (ms),

signal S, P, Q: Bit := '0'; second (sec), minute (min), and hour (hr). Function Standard.Now
returns the current (simulation) time in femtoseconds. Several

pVHDL constructs require expressions of type Standard.Time; the
bin two most important uses are in waveform elements in signal

S <= ' afler 20 ns, '0' after 40 ns; assignment statements (to specify the delay before a projected
wait; value becomes the current value of a signal) and in timeout clauses

m ndpem; in wait statements (to specify the maximum period of time that a
process will be suspended).

143 9th Annual National Conference on Ada Technology 1991

- in wavelorm elments T+20ns will be equal to the value of P at T. Suppose that the
Signal-! <= V after 5 ns, T after 10 ns; process were rewritten as follows:

- in a timeout clause FIel
waft WIrMOns; b

S <= P after 0 ns;
Other contexs requiring the use of time expressions are the value of S_last_val <= S after 0 ns;
certain attributes defined for signals (for example, wait o P;
S'LAST_EVENT, which gives the amount of time that has elapsed end proms;
since the laU event occurred on signal S), the parameter for certain
attributes defined for signals (for example, SSTABLE(10 ns), The signal assignment statements now specify that the transactions
which returns a boolean value indicating whether there has been are to be posted after a zero-time delay. Nevertheless, the
an event on S in the last 10 ns), and in disconnection specifications transactions do not take effect immediately; they take place at
(to specify the period of time between the transition of a guard some time in the future that is still earlier than one femtosecond
expression from True to False and the disconnection of drivers (the minimum measurable duration in VHDL) in the future.
guarded by the expression). Therefore, at the point of the wait statement, the values of S and

SJasLval will not, in general, be the same. A transaction that is
In an contexts, time in VHDL is elapsed time. Standard.Now specified with a time expression that evaluates to zero is said to
returns the number of femtoseconds elapsed since the start of model take effect after one 'delta delay". Delta delays are
execution; at the start of execution of any VHDL model, a call to infinitesimal: no number of them will add up to the miminum
Standard.Now returns the value 0 fs. In those constructs that measurable duration of one femtosecond. However, a delta delay
require expressions of type Standard.Time, values are elapsed time will induce an additional simulation cycle. A delta cycle proceeds
relative to the value of Standard.Now at the point at which the in the same fashion as does a normal cycle except the clock is not
expression is evaluated. For example, the signal assignment advanced. First, all signals having a delta-delayed transactions
statement are identified; the new values are made current values (without

advancing the clock); those signals having transactions that are
S - T after 20 ns; events are identified, and all processes sensitive to these signals

are run. As a result of running these processes, additional delta
specifies that after 20 ns in the future, T will become the value of cycles may be induced. In fact, it is possible to specify a process
signal S. And the wait statement that will induce an infinite number of delta cydes, preventing the

clock from ever advancing,
wait rti ns;

prom.
begin

specifies that the process containing this wait statement will be after 0 as;
suspended for the next 100 ns. wait on S;

Time in VHDL is simulated time; it has no relation to real time. end process;
Unlike Calendar.Clock in Ada, Standard.Now in VHDL is Clearly this is not a model of a useful piece of hardware;
determined by the execution of the VHDL model. Furthermore, the nevertheless, the semantics of VHDL allow this just as therate at which VHDL Standard.Now advances with respect to semantics of Ada allow inifiite loops and deadlocking tasks.
wag-dock time in the real world is not constant. If the model is
executing a VHDL process statement that lacks a wait statement, Concurren
then the value of Standard.Now will never advance regardless of
how long (by wall-dock time) the model executes. On the other
hand, it is possible for an executing model to advance the value of Having examined the dynamic semantics of VHDL and the conceptStadar.No byI h (oe hur)in nemillisecond of wal-clock of time in Ada and VHDL, we turn to the notion of concurrency. Ada
Standard.Now by I hr (one hour) in one and VHDL are both "concurrent" languages, but they have verydifferent conceptions of concurrency. In Ada, the basic unit of
Figures 2 and 3 contrast VHDL's and Ada's notions of time and concurrency is a declared or allocated object containing entries that
concrency, can be called; in VHDL, the basic unit of concurrency is the processstatement, which cannot be referenced or called from outside. Ada

The simulation cycle described above is complicated somewhat by and VHDL have different methods of coordinating execution across
the possibility of zero-delay signal assignments in the model. A the basic units of concurrency. Ada programs are nondeterministic
signal assignment always posts a future transaction, even if the while VHDL programs are deterministic. Finally, Ada and VHDL
time expression evaluates to zero. Consider the following VHDL have different methods of resolving conflicts.
processm Coordination of Execution.

VIw The basic unit of concurrency in Ada is the task. A task is an object$ < Pafir 20 s; that is declared or allocated in a package, subprogram, or anotherS.lastval <= S after 20 ns; task. Like other objects declared in packages, a task can be madew mr visible outside the package declaration in which it is declared,mu pm.P; and tasks can be passed to subprogam parameters. Anywhere a taskis visible, its entries can be made visible by selection. The basic
Suppose that this process executes at time T. At the point of the unit of concurrency in VHDL is the process, which is defined by a
wait statement, the process has posted two future transactions, both process statement in an architecture body. A process may be
to take effect at time T+2Ons. The value of S-lastval at time associated with an identifying label, but the process is not visible
T+20ns will be equal to the value of S at T, and the value of S at to any other processes, neither to sibling processes contained in the

9th Annual National Conference on Ada Technology 1991 144

satneardtl0cre body nor o processes contained in other the entry call until the called task has finished executing the
architecture bodies. Unlike the Ada task, the process is not an sequence of statements in it corresponding accept statement.
ebec dht can be passed to subpogram.

Ada also does not allow the programmer to specify when a
In VHDL, the numbe of p e in a model is determined by the particular statement will execute with respect to time. A program
elaboration of all the architecture bodies in the model, which may contain the delay statement
occus before the execution of any VHDL statement in the model and
before the sinaation dock advances beyond 0 fs. As part of the delay Time_to_wake._up - Clock;
first aimluation cycle, every process in the model is activated, in no
particular order. The number of processes in a VHDL model rmmains However, Ada does not guarantee that the task will resume
constant for the duration of the model simulation; VHDL does not execution at the intended time of day; it guarantees only that the
allow dynamic creation of processes and does not define process calling task will be suspended for at least the amount of time
completion or termination (although a VHDL process that executes specifed in the duration expression.
an unconditional wait might be thought of as having completed its
execution). This static scheme of process creation and destruction There are four ways in which Ada is nondeterministic. First, as just
makes sense in a language that is describing hardware: hardware mentioned, Ada does not specify an upper bound on how long a task
components do not dynamically appear and disappear. In contrast, that has executed a delay statement will remain suspended.
an Ada task is not constrained to model some physical entity. To Second, Ada does not specify which of several ready tasks of equal
account for the possibility of dynamic creation and termination of priority will run next. Third, Ada does not specify which of
tasks, Ada has a complex set or rules governing the activation and several open accept alternatives in a selective wait statement will
termination of tasks, There is also a difference, by several orders of be chosen. Fourth, Ada does not specify the order in which several
magnitude, between the number of tasks in a typical Ada program tasks declared in the same declarative region will be activated.
and the number of processes in a typical VHDL description. A low- This nondeterminism does not make Ada a defective language.
level VHDL description of a large VHSIC device might have However, it does mean that a legal Ada program may not have the
100,000 processes. As s practical matter, implementing a simulator same effect every time it is run. A program may be run on two
capable of computing 10,000 transactions per second on a model with different (single-processor or multi-processor) systems, and allowed
10,OW00 processes and an equal number of signals would be very to terminate normally in each instance, but may have different
difficult if dynamic creation of processes were allowed, final states; that is, the static variables may have different values

at the end of the two executions. In fact, if tasks in the program
Perhaps the most fundamental difference between Ada and VHDL execute delay statements, two executions of the program on the
is in the means by which they achieve coordination among same system may result in different final states.
concurrent units. Ada tasks coordinate their execution through
entry calls; in this sense, Ada is a control flow language. In In contrast, VHDL programs are deterministic. If a process specifies
contrast, VHDL (at least the concurrent sublanguage of VHDL) is a a certain delay, the process is guaranteed to resume after precisely
dataflow language. A VHDL process is not called or invoked; there (as measured by Standard.Now) the specified amount of time.
is no flow of control among VHDL processes. Real hardware Every time a VHDL program is run - whether on a multi-processor
consists of a number of components that are continuously "active" or system or on a single-processor system, whether on one machine or
'executing " in the sense that they are continuously supplying some on several -- the program will result in exactly the same state.
signal level to each of their outputs. To achieve some efficiency, (Strictly speaking, this is true only if the model runs to quiescence;
VHDL models an abstraction of real hardware. In this abstraction, if a process were to execute an assertion violation that caused the
each process only needs to be active when one of its outputs could model to terminate before quiescence, there is nothing in the
change, and this can happen only when one or more of its inputs has language definition to guarantee that successive runs of the model
changed. Thus, a VHDL process is active only in a simulation cycle would result in the same final states.) Hardware designers require
in which one of the signals to which it is sensitive (a subset of the a high degree of determinism in a simulation language like VHDL.
set of signals the process can read) has a change in value. The set of A designer is interested in monitoring not only the values of the
signals that the process is sensitive to may change from one relatively few signals connected to the environment but also the
simulation cycle to the next; however, the current sensitivity set is values of any of the signals internal to the model at any point in
always a subset of a set that is known at the start of execution the simulation to detect violations of timing constraints,
(after the model has been completely elaborated). underdriven busses, etc. The determinism of VHDL insures that

An Ada task waits for an execution event - a called task completes such conditions are repeatable from one simulation run to the next.

execution of an accept statement, or a calling task executes an entry Resolution of Conflicts.
call statement - but cannot wait for a data event. A VHDL process
waits for a data event - a change in value on a signal - but cannot Two concurrent units can come into conflict either because they
wait to be called directly by another process. Ada tasks and VHDL simultaneously require the service provided by a third unit or
processes can both wait for timeouts events - the delay statements because they require simultaneous access to a data item where at
in Ada, the for clause in a VHDL wait statement. However, in least one of the accesses is an update.

Ada, the use of delay statements is not a reliable way to coordinate
execution across tasks. In VHDL it is not possible for two processes to conflict over access to

a service provided by a third process since, as explained above, one
VHDL process cannot invoke another. In Ada, it is possible for two
tasks to require the services of a third task, in which case the

Two Ada tasks run concurrently in the sense that, in the general conflict is resolved by lCFS queuing at the task entry.
case, Ada does not specify whether a particular statement in one
task will execute before or after a particular statement in the other Conflicts over access to data items can occur in both languages.
task. Order of execution is deterministic only if one task executes a Given that it is not a data flow language, it is not essential that
call to an entry in the other task, and in this case it is guaranteed Ada define a mechanism for resolving conflicting accesses to a data
only that the calling task will not execute the statement following item, and indeed it does not define any such mechanism. VHDL

145 9th Annual National Conference on Ada Technology 1991

handles conflicting data accesses differently, depending on with Example-types ; use Exampletypes;
whether the conflict is read-write or write-write. Strictly procedure Example Is
spuakin, read-write conflicts are excluded by the language since task type Client-type;
the current value of a signal is determined at the start of a task type Server_type is
simulation cycle and cannot change within a simulation cycle. A enty Request
write to a signal is always a write that projects a value at some (Request line: in Request-type;
time iathe ftr, eve if only one delta iathe future. And since Replyjne : out Reply_type);
time does not advance, even by one delta, within a simulation cycle, and Server_type;
there is only one well-defined value for any signal within a ClientL, Client_2: Client type ;
simulation cycle. Write-write conflicts are more complicated. It is Server0 : Server-type;
possible for each of two processes to put a transaction with the same
(future) time component but differing value components on a single task body Client.type is
signal. However, the semantics of the language require that any Request: Request type;
such signal, called a resolved signal, have an associated user- Reply : Reply-type;
defined resolution function. Such a resolution function has a single begin
parameter whose type must be an unconstrained array having the IMP
type of the resolved signal as its element type; the values passed as
the N elements of the aray parameter are the N current values - formulate request in variable Request
projected by the N processes that execute signals assignments to the
signal (called the "drive.- of the resolved signal). The value of a ServerO.Request (Request, Reply);
resolved signa is automatically re-computed by the associated cue Reply is
resolution function at the start of each simulation cycle in which
any of the resolved signal's drivers has an event. A typical endcse;
resolution function might compute the *wired or" or "wired and" of end lop;
the driving values, end Client_type;

Comclaion task body Server_type is
Reply : Replytype;

Both Ada and VHDL provide for concurrent computation, but their beein
approaches to concurrency as well as their underlying notions of loop
time are fundamentally different. Ada's time is the real-world select
time of day while VHDL's time is elapsed time of simulation. In accept Request
Ada, the execution of concurrent units is coordinated through a (Requestline: in Requesttype;
network of entry calls and accept statements, while in VHDL Replyjline : out Replyjtype) do
coordination is through a network of data paths. These differences
in the conception of time and in the notion of concurrency reflect the -ormulate reply in variable Reply
different functions of the two languages. As a real-time
programming language, Ada must assist the programmer in Reply-line :- Reply;
coordinating the flow of control in algorithms with typically end Request;
coarse-grained parallelism. As a hardware description and
simulaton language, VHDL must assist the hardware designer in terminate;
capturing the massively parallel data flow of hardware, end select;

end loop;
end Server_type;

References

I Institute of Electrical and Electronics Engineers, Inc. IEEE
Standard VHDL Language Reference Manual (IEEE Std 1076-1987). end Example;
New York, 1988.

121 R. Lipsett, C. Schaefer, C. Ussery. VHDL: Hardware The VHDL equivalent will be given in two versions. In the first
Descrition and Desig. Iluwer Academic Publishers, Boston, 1989. version, the model consists of a single entity declaration and a

corresponding architecture body. The architecture body contains
three processes, one for each of the two clients and one for the

Apgotdix server. Like the Ada server task, the VHDL server process will
take requests from the two clients in any order. Where the Ada

This appendix contrasts the approaches to concurrency in Ada and had only one entry with two parameters, the VHDL has two pairs
VHDL by means of a simple model consisting of a server and two of signals. This is necessary since it is possible for two requests to
clients. First the skeletal Ada is given. The program declares a arrive at exactly the same time and the VHDL model will not
task type for the client and a task type for the server. The server queue requests from multiple processes as the Ada will queue entry
has one entry call with two parameters, one for the client's request calls from multiple tasks. It would be possible to implement the
and cne for the server's reply. design using a tingle pair of signals (or even a single signal for both

requests and replies); this would correspond to a hardware bus and
package Example"types Is would require an associated bus protocol and resolution function.
subtype Requesttyp is Integer; Notice that VHDL does not have a notion of a process type like
subtype Reply-type Is Integer; Ada's task type. The second version of the VHDL model shows

end Example-types;

9th Annual National Conference on Ada Technology 1991 146

how the procem code can be encapsulated in an architecture body The second VHDL version encapsulates the client process and the
and reused via component instantiation ststenents. server process in separate entity-architecture pairs. These Client

and Server components are then instantiated in the top-level
package Examplejtypes is Example architecture.
subtype Requestjtype is Integer;
subtype Replyjtype Is Integer; use Work.Exampletypes.all;

end Exampiej-ypes; entity Example is

use Work.Example-types.all;
end Example;

entity Example Is use Work.Example.types.all;
end Exanple; entity Client is

port (Requestjine : out Request_type;
architecture Example of Example is Reply-jine : in Reply-type);
signal Request_1, RequesL2 : Request-type; end Client;
signal Replyj, Reply_2 : Reply-type;
constant Requestdelay : Time:=...; architecture Client of Client is
constant Reply-delay : Time: ... ; constant Requestdelay: Time :a ...;

bei ei
Client-proces: process

Clientl : proce variable Request: Requesttype;
variable Request: Requesttype; begin

- formulate request in variable Request
- formulate request in variable Request

Request Jine <- Request after Request_delay,
Request.1 <=Request after Request-delay wait on Replyline;
wait on Replyl; case Replyjline Is
case Reply_! is

end cue;
md cae; end process;

end prmces; end Client;

Cient. : process use Work.Exampletypes.all;
variable Request : RequesLtype; entity Server Is

begin port
(Requestlinel, Request line_2:

- formulate request in variable Request in Request_type;
Reply...ine1, Replyjine_2

Request_2 <= Request after Request-delay; out Reply-type);
wait on Reply_2; end Server;
case Reply_2 is

architecture Server of Server is
nd cae; constant Reply-delay : Time:= ... ;

endprocess; begin
Server-process : process

Serve: prcessvariable Reply : Reply..type ;
variable Reply : Reply-type; vian

begin wait on Request linel, Requestline_2;
wait on Requestl, Request.2; - reply to one or both of the request lines
- reply to one or both of the request lines if Request_line_'Active then
i Request l'Active then - formulate reply
- formulate reply Replyjine-l <z Reply after Reply-delay;
Reply-l <- Reply after Replydelay; end if;

end if; if Requestline_2'Active then

if Request_2'Actlve then - formulate reply
- formulate reply Replyline2 <= Reply after Reply-delay;
Reply.2 cm Reply after Replydelay; end if;

end If; end process;
nd process; end Server;

end Example;

147 9th Annual National Conference on Ado Technology 1991

wddtec,erm Example of Example Is
signal Requesu, Request): Request-type;
signal Replyl1, Rteply..2 : Reply-type;

port (Requestlhne : out Requesttype;
Replyjline :In Reply-type);

sadempopmw;

pelt
(Reques&inej1, Request-ine.2:
In Request-type;
Reply-lne-.1, Reply..ine-.2
out Reply-type);

end ampamt;
for all -. Client use entity Work.Client (Client);
for all: Server use entity WorkServer (Server);

be Autihorciientj:aCin port map
(Requestj, Pepy1);

Client): Client port map Carl Schaefer is a Lead Scientist with the MRE Corporation in
(Request)., Reply.2) ; McLean, Virginia. Previously he was with Intermetrics, Inc.,

Server-0: Server port map where he was engineering manager for Intermetrics VHDL tools.
(Requestj, Request), Repyjl, Reply_.2);

end Examnple;

LiansactAdvanc UpdteSigal

Futre rasacion EetEen

Execte rocsse _______________ Select Prgnceses
Processes ~Tim Sesiiv Nex Event_________

to Signals with

t I Events

Figure 1: VHDL Simulation Cycle

fth Annual National Conference on Ada Technology 1991 148

P2

P3

Simulation Cycle

100 110 200 205 210 305 400 450 460 470 510 690 695_

Standard.Now

Processes PI, P2, and P3 are concurrent, but not all of them are active at each
simulation cycle. The simulation clock (Standard-Now) does not advance by the
same amount of time for each new simulation cycle, and the clock does not advance
during a cycle.

Figure 2: VHDL Concurrency

TI

T2

T3

100 1 10 120 130 140 150 160 170 180 190 200 210 220_

Calendar.Clock
Tasks TI, 72, and T3 are concurrent, but they are not all simultaneously
active. Time (Calendar~aock) advances at a constant rate regardless of how
many tasks are active.

Figur 3: Ada Concurrency

149 9th Annual Notional Conference on Ado Technology 1991

DEVELOPING INTERFACE STANDARDS
FOR Ada SYSTEMS

Ella L. Krous

TELOS Systems Group
Lawton, Oklahoma

ASTRACT The point may be at (X,Y). The graph may be defined
between X and Y coordinates of 0- 100 and 0-50 respectively.

This paper presents a method for resolving a growing need of Te data items are entries X and Y may assume. The data use
the Department of Defense (DoD) to develop and maintain identifiers would be '" it Location, X" and "Point Location,
standards for documenting the communication among software Y". The generic data ields' names may be "Horizontal Axis
systems developed in Ada. These documented interface Identifiers" and "Vertical Axis Identifiers". All coordinates
standards will become the design to documents, test to using the same entries can now use the same data items. This
documents, and a management tool for developing Ada allows the data to be entered once and used as many times as
systems. necessary. This commonality maximizes the data elements

sent between nodes.
IrODUTION

The database has now been created with specific information
These documented interface standards were initiated in that will define the domain for messages to be created and
December of 1988. The objective was to establish a common exchanged among the nodes. The structure of the message is
database which would provide support for the generation of defined along with the message purpose, communication line
interoperability specifications for selected Command and description, set description, message compaction description,
Control Systems. This paper will discuss the development of cases, conditionalities, and any special considerations required
the data to be required in the interface standard for the for usage by the developer. Once the information is stored in
developed Ada systems. The paper will also discuss the the database, the message map can be used between any two
management of the interface information. Finally the paper nodes.
will discuss how the interface information and resulting
documents will be used to develop interfacing and The case statements developed for each message are to support
interoperating Ada language systems to ensure interoperability the field operational requirements for a message to be on an
among the fire support tactical data systems. interface. These are the minimum requirements for a message

to achieve a specific purpose and still pass the receiving
OF M GEABLE DATA system's input syntax. The cases are related to the message

they will be used to support. The cases are in an Ada format
There are various systems currently in the process of being and use the same data elements as are on the message maps.
designed and engineered to use Ada, where the target system
is the Army's commo, nardware/software. The data required Conditionalities between data sets on a message are defined
to create the interface specifications was taken from existing and produced in an Ada condition format. The actual data
interface documents. The type of data required to develop the items that cross the interface are also monitored by
interface specifications was a definition of the interface conditionalities. This assists the implementation process for
identification, operational facility descriptions, system an Ada system. The conditions are stored in the database and
descriptions, communication protocol, message protocol(s), are also related to the message they will be used to support.
the messages, and the data element dictionary. The data has The conditions use the same data elements as are on the
been used to create over 121 operational facility interfaces message maps.
required for each of the Ada systems to interoperate and to
interface in a tactical environment. The descriptions of individual operational facilities are

developed concurrently with the data element dictionary.
The database was constructed from the data required for Because an existing system's description can change as the
transmission and reception on an interface. The pieces of data requirements are defined, the system description is written
that are transmitted and received have been named data items. generically. The echelon that a system supports on either end
These data items were then grouped together according to of an interface is now called an Operational Facility (OPFAC).
usage, containing the maximum range values for the interface The interface is not defined between systems, but between
on which the information is used. The grouping of data by OPFACs (node to node). The OPFAC descriptions are stored
how it is used defines the data use identifiers. The data use in the database.
identifiers were then grouped together and given a generic data
field name. The data items, data use identifiers, and data field The database has additional information relating to
names wene organized into a dictionary. The database can be communication protocols for an interface. The communication
searched o find information by generic data field and data use protocols are developed using the International Standards
identifier. Organization (ISO) seven layer model. The message protocol

descriptions are also stored in the database. There is also
For example, consider the mathematical model of a point necessary transmitting and receiving information, legal
defined in the three dimensional field along an X and Y axis.

9th Annual National Conference on Ada Technology 1991 150

combination tables, and other unique information related to a The interface documents are also used by the system test
specific intrae stored in the database. specialists as test to documents. The new Ada systems should

be able to operate in the same manner as an existing system.
The OPFAC descriptions, selected message maps, selected The data on an interface is clearly defined between the two
cases, selected conditionalities, the pieces of the data element OPFACs. The interoperability tests are accomplished in a
dictionary used on the selected messages and other interface similar manner to the unit tests. Each case and conditionality
data are then combined to produce an interface specification, statement are now easily identified and tests can be written for
This information can be recalled and used to perform each one.

quiremens and/or impact analysis.
Because a database of all the generated interface documents is

MIANAGING TER INTERFACR DATA maintained, future changes to a particular message can be used
to develop new requirements. Changes to a particular message

The database is managed and maintained by a system can also be used to predict impacts on current information
independent team of engineers. The engineers are responsible processing and system development.
for the integrity of the database, the consistency of the data,
and the operational stability of the interface documents The results of analysis performed on the database will show
generated. Maintaining the interfaces in this manner has how changes in one node's requirements will affect another
improved the awareness of interoperabiity problems and node's requirements. These results can be used in resolving
helped in eliminating problems with design differences and managing interoperability problems. If the proposed
between the nodes. Using a team of engineers to maintain the enhancements are to be implemented by an OPFAC, the
database, the OPFAC's requirements are defined, analyzed, interface document will be used as a design to document by the
and potential interoperability problems are identified. This OPFAC system developer and maintainer.
improves the semantic and syntactic meaning of a message on
an interface- For example, a requirement given to OPFAC A may not be

given to OPFAC B. OPFAC B should have received the
For example one OPFAC has a data element range for a requirement also. This may develop an interoperability
numeric entry of 0-99; the other OPFAC on the interface has a problem. This can be identified by analysis on the database.
range for the same numeric entry of 0-72. The entries 73-99 The requirement can then be further analyzed for
cause the second OPFAC to error and interoperability has not implementation.
been achieved. These differences are identified to the
participating OPFAC's system engineers by the CONCLUSI
interoperability engineer(s). A solution is achieved before the
systems are developed. This prevents having to solve the As the DoD development budgets are reduced, it is not enough
problem late in the life cycle of the development phase. It is to have all systems interface with each other. The systems
well documented that the later a problem is discovered, the must also interoperate effectively. It is no longer sufficient for
more expensive it is to fix. an interface to pass pieces of data between two OPFAC's.

The systems must develop the capacity to exchange
The improved awareness of the data exchanged between nodes information in a meaningful fashion to accomplish an
has led to an improvement in the interoperability among the OPFAC's operational mission. One way to assure this is to
systems. The data is no longer exchanged with only the develop and use the new interoperability design documents to
processing requirements for two OPFACs to interface. The increase the interfacing capabilities of the Ada systems and
processing requirements for an OPFAC are met, but from a their interoperability with other systems.
field operational view, the data exchanged is complete enough
for the interfacing OPFACs to achieve interoperability and
complete their mission.

For the difference between interfacing and interoperating there
is a common example. "Meet me for lunch.", is a complete
message, but not enough information to have two people have ELLA L. KROUS
lunch together. "Meet me for lunch in the restaurant across the
street at 12.00", is more information, and provides a higher TELOS Systems Group
confidence level of having a meeting. P. O. Box 33099

Ft Sill, Oklahoma 73503-0099USING THE INTERFACES

ELLA L. KROUS has a
The resulting interface documents will be used as design to bachelors degree in mathematics
and test to documents for developing the Ada software. New and a bachelors degree in
systems to be developed in Ada will be able to reuse the computer science. Ella has over
tactical communication information in the documented 5 years programming exper-
interface. The selected message maps, selected cases, selected ience in designing, developing,
conditionalities, and the appropriate portions of the data and implementing complex government software applications
element dictionary are used by the system development for Department of Defense Command and Control Systems.
personnel designing and engineering an Ada system. The
OPFAC system description may be changed as necessary
when a completed Ada system replaces the existing field
system. This allows reuse of the interface document.

151 9th Annual National Conference on Ada Technology 1991

A LAYERED ARCHITECTURE FOR DBMS INTERACTIONS WITH AN ADA APPLICATION

Amber M. McKay and Richard A. Pederson

M Government Systems
Research Boollevard

Rockville, MD 20850

Sum= Four-Layer Architecture.

On a large project, our company was faced with Designing the application so that it would take
using Ada in combination with a relational database Dvatgiof the aov ifatuoes requi aoulaye
management system (DBMS) to manage a very large advantage of the above features required a four-layer
maageent aissbute(dMS)toe managesa ver eg architecture. Figure I depicts the layered architecture, and
database in a distributed on-line transaction poc in the following sections provide a detaled dscription,
(OLTP) environment. In addition to interacting with an including examples, of how this design was implementeo.
extremely large and complex database, we had the icui*eapeo o hsdsg a eetd

extrmel lare ad cople datbas, wehadthe In addition, we briefly describe how using the layered
challenge of using a new DBMS product that was untested I diin ebifydsrb o sn aee
for similar production applications. architecture simplified the software development process

and facilitated project staffing and training.

Our objective was to design an architecture that
would provide a fully functional interface between the Ada 1. Layer One - The DBMS. The first layer
application code and the DBMS, yet still utilize the many consists of the DBMS including its schemas, views,
advantages of the Ada language. In addition, we wanted integrity mechanisms (ie., rules and triggers used to
an architecture that would be simple to implement, easy to enforce data and referential integrity), and stored
maintain, and cause the minimum impact on the procedures (Le., precompiled SQL data manipulation and
productivity of the software engineers designing and query statements).
implementing the application.

2. Layer Two - Encapulating the DBMS
Acces ibra. The second layer consists of an Ada
package that encapsulates all of the DBMS access library
routines required by the application software. This

Desig Avwach package also manages all of the concurrent connections to
the database and the asynchronous accesses of the

Architectural Features, database. A record type was developed to store all of the
information necessary about a connection to the database.

The objectives outlined above were achieved by Figure 2 shows how this record type is defined within the

designing the architecture to incorporate the following Ada package and the following paragraphs provide a

features: detailed description of the record.

1. Hiding of Database From Application Use of
the 'abstraction* concept of hiding the details of the
database from the application so that the database
application code could be modified without requiring
recompilation of the calling software. Using this concept
was particularly important for our application since, APICATION CODE

initially, we were using a beta version of the DBMS
product and wanted to insulate the calling Ada softwa-.e
from potential problems with the DBMS or the database DATABASE LIBRARY ROUTINES

access library. Hiding the database from the application
also permitted us to develop applications that were
insulated from any location references required to process DBMSJFP..PKG
against the distributed database.

2. Asychronous Proeming Use of Ada's notion DIMS (SERVER)

of "concurrency to allow processes to work
asynchronously with the database. This Ada feature was
of special significance since it freed up the anplication
software te do other processing while the DBMS was
processing rnsactions against the database.

Figure 1. Layered Architecture for Database Accesses

@ 1990 GTE Government Syslems Corporation 9th Annual National Conference on Ada Technology 1991 152

software to interface with the database was developed. A
template for the interface code was built and provided to

typCDBPROCESSREC is each software engineer who was developing application
record code requiring access to the database. The engineer could

TEMPORARY :BOOLEAN; update the template with code specific to her/his
DBPROC :DBMS TYPES.DBPROCESSPTR; application. This procedure facilitated rapid code
DB SYNC TASK- development, minimized coding enrors, and simplified
DBSYNC-TASK PTR; training since it limited the number of engineers
ERRORS -ERRGR LIST developing code to directly interact with the database.

end record; Figure 3 provides an example of a procedure that
establishes a temporary connection to the database (if a
permanent connection is not already established), sends anSQL sting or a stored procedure name and parameters to

Figure 2. Definition for Database Processing Record the DBMS for processing, retrieves results from the

The TEMPORARr boolean indicates whether DBMS, and processes errors.

the connection is a temporary or permanent connection. 4. Laver Four - The A-fication Q& The
Processes that infrequently query the database make a fourth layer-consists of the application code itself The
temporary connection to the database prior to each query aourthalayercconsistssofnthelapplicationccode itself.tTieand terminate the connection immediately following application code is responsible for making calls to the third
execution of the query. Permanent connections are layer routines and for establishing permanent connections
normally made at program startup and are not terminated to the database In the previous example, when the

until the program is shut down application code needed to retrieve data from the
database, a simple call,

The "DBPROC" pointer is a structure that is RTRV DATA(DBPROCESS INDEX,DATA REC);-,
maintained by the DBMS's access library. This pointer is was issued. Following the call, the application had the

used by the DBMS to differentiate between connections to results available in the DATA REC record for processing
the database server. Note: in a Client Server DBMS To facilitate application development, we created a
architecture, the Server is the portion of the DBMS f orm ali tte ofplicatin databaenteration&
responsible for managing accesses to and manipulation of formalized method of documenting database interactionsthe database; the Client portion of the DBMS is the This method enabled developers to build the database
interfaceto the user. schemas, views, and stored procedures more efficiently.The method required building compilable Ada packages,

The DB SYNC TASK PTR is a pointer to a task called DataBase TRansactions (DBTRs), which
used as a blocking risk. At blocking task prevents documented all transactions against the database, but wereueecution o an lction ask tocing an aests only used for reference purposes Each DBTR referencedexecution of an application task that is calling an access multiple DataBase Interface (DBI) routines, which alsoroutine, thus allowing other application tasks to be c nitd o o pl b eA as eii ai n .E c B ascheule Th daabae acessrouine sed ~consisted of compilable Ada specifications. Each DBI was
scheduled q The database access routines send an then translated into a stored procedure (Le., a grouping ofasynchronous request to the database server and then wait one or more SQL statements that were compiled and
for the task to receive notification of completion from the o ore SQ staeme that were c ped ddatabase server. stored in the database by the database server). Every DBI

contained all of the inputs, outputs, and error handling

The 'ERRORS' field is a pointer to a linked list of required for the associated stored procedure. The DBTRs
error messages. Routines are set up for message handling and DBIs, in combination, were then used to build the

and for error handling When a connection is made to the third layer of routines that passed the data back and forth
database server, these routines are assigned to process from the application to the database. Although the
database messages or errors as they are generated. Eachtheerror message that occurs is attached to the linked list of database interactions, they were created as compilable
errrmessage Lat whenrsistt the application t p o tAda specifications to ensure that all of the data typesmessages. Later, when the application needs to process the referenced actually existed Figure 4 provides an example
errors, special routines are called to traverse the linked list DBTR and Figure 5 provides an example DBI.
of errors, interpret them, and send the errors back to the
user application in a string variable or an enumerated
message. Fatal system errors are written to an error log A Layered Approach - Observations
file and an exception is usually raised.

The only routines permitted to manipulate the
DBPROCESS REC structure are routines included in the Overall, we found the layered approach, described
second-layer pickage. This package hides all of its internal within this paper, to be an extremely effective method of
processing from the user application so that the user documenting, developing, and maintaining database
application only needs to know whether the connection to interactions for a very large database application. The
the database server is temporary or permanent following benefits were derived from this approach.

3. Layer Three - The Database Transaction 1. Coding of Repetitive Accesses
Ldha= The third layer is composed of a library of Facilitate. Due to the size of our application, many
packages that contains specific database transactions for similar and/or repetitive database accesses were required.
each of the applications To simplify the interface to the The layered approach minimized the effort required to
transaction library, a standardized way for application code those accesses for the many different applications.

153 9th Annual National Conference on Ada Technology 1991 0 1990 GTE Government Syslems Corporation

procedure RTRV DATA (DBPROCESS INDEX: in TYPES PACKAGE.DBPROCESS PTR;
DATAREC: inout TYPESPACKAGE.DATARECTYPE) is

-PURPOSE:
The RTRVDATA procedure queries the database using SQL commands to,- retrieve <,-nter purpose for retrieval>.

PARAMETERS:

DATA REC - record to hold returned data
- DBPROCESSINDEX - index into dbprocesstable (opt)
-EXCEPTIONS:

DATABASEERROR - raised when any error occurred during
- the database access

METHOD:
The RTRV DATA procedure sends a SQL command buffer to the
database server to retrieve <Enter method of retrieval here>.
This routine implements the RTRV DATA DBTR.

RESULT CODE: DBMS IF PKG.RESULT CODE TYPE;
ROW STATUS: DBMS-IF-PKG>ROWSTATUS_-TYPE;

begin
-e Conn.ect to the database server and if connection is permanent,
-[just allocate a DB SYNCHRONIZE task
DBMSIFPKG.CONNECT(DBPROCESS.INDEX, < Enter Database Server Name >*);

-Fill command buffer
DBMS IF PKG.ADBCMD(DBPROCESS INDEX,

"<EnterStored Procedure Name or SQL-Command and Parameters>");

-LSend commands to the database server
if-DBMS IF PKG.ADBSQLEXEC(DBPROCESSINDEX) = DBMSIFPKG.FAIL

then - -
raise DATABASEERROR;

end if;

-[Loop for each results command
loop Determine result code

RESULT CODE := DBMSIFPKG.ABDRESULT(DBPROCESSINDEX);

- Error messages are called here
- This routine just returns an error string
-[Fatal errors Will raise an exceution
DBMSIFPKG.SYSERRSTAT(DBPROCESSINDEX,INFOMSG);

case RESULT CODE is
; Exit loot-when all results have been vrocessed

lien DBMSIF PKG.NOMORE_RESULTS =>exit;

when DBMS IF PKG.SUCCEED =>
-[If data i being returned, bind data being returned

from the database into local program variables

Figure 3. Database Transaction Library Template (I of 2)

S1990 GTE Government Systems Corporation 9th Annual National Conference on Ada Technology 1991 154

DBMS IF PKG ~BN
-(DDPROC S -> DBPROCESS -INDEX,

RA'RW _ >"DBMS IF PKG.CHARBIND
VARA. ->DATA R E~AR PARAM PLEN4QIHVARADR > D1A CMAR-ARAMl'ADESS);

DBMS IF PKG.ABDBIND
_(WR CSS = > DBPROCESS INDEX,

MN=> 2,
VARTYPE => DBMS IF PKG.INTBIND
VARLEN => DATA RWINT PARAM1'LENGTH
VARADDR => DATA RECINT-PARAM 1'ADDi(ESS);

-Loop for each SQL row returned
-o[Retrieve trow from database se'veRUOW STATUS: DBMS IF PKI ABDNEXTRO W(DBPROCESS INDEX);
case ROWSTATUS is

-[xt when all rows are returned
wenDBMSIFPKG.NO MORE ROWS =>

exit;

[DProcessin on rexular rows returned
wten DBMS IF P)G-R EG ROW=>

- Ifyou-re-epectn
ore than one row

tob eturned, siecial processing to1-put data in a listR fie, etc. gets
nIlincorporated here.

Unexectd erorraise an exception
raise DATA >BASE ERROR;

,nd case;endloop;

A Unex~ected error, raise an exception
raise DATA BASE ERROR;

end case;.

end loop;
-Dsonnect connection from database if connection

jurmanent. cnne~o wyill not be disconnected.
e DB SY NCTAs is freed up to be used for another

I)SIF-PKG. DISCONNECT(DBPROCESS INDEX);

-IUnexpected errors
exception =

DBMS IF PKG.DISCONNECT(DBPROCESS INDEX);
raise DATh BASE-ERROR;

end RTRV DATA;

Figure 3. Database Transaction Library Template (2 of 2)

155 9th Annual National Conference on Ada Technology 1991 0 1990 GTE Government Systems Corporation

.****** * * *** ****** **gggetlslll ** **~tq ***** *******8 * * * ** s**** s* *0 ****sI esosses *0*0

DATABASE TRANSACTION SPECIFICATION

_8 This .package is a dejig specification Fsed by Dat4basq Engineering and S/W
D*evelopmeftasabasistor agreement for the functions included in a
database transaction. This will not be linked into an Ada executable.

0*

- DBTRANSACTION NAME: RTRV DATADBTR

- CREATION INFORMATION: <Enter Date and Author>
REVISION HISTORY:

DATE NAME SUMMARY
- <Enter revision information>

- PURPOSE: <Enter a high level purpose for the DBTR
(Why is the data being retrieved and how
-cs it fit into the big picture?)>

- DESCRIPTION:
The RTRV DATA DBTR prqcedure calls the RTRV DATA DBI
to retrieve data. <Ifclude appication specific
details about the transaction.>

- GENERAL ADVISORY/ERROR CONDITIONS:
<Specify error handling options, raise an exception,
return a status, etc.>

NOTES: <An notes that would be helpful in documenting- the trahsaction are incl uded here. >

CALLING LIBRARY PROCEDURE:
<Specify package and calling procedure name>

- DBDIST? <YES/NO indicates whether this is a distributed update across servers>
- DATABASE SERVER LOCATIONS: <Specify which databas€ servers this

transacion will be applied against>
- PERFORMANCE: <Include any performance issues for reference>

- FREQUENCY: <Include frequency of queries and updates (low, medium, high)>

- CONCURRENCY: <Include any concurrency issues>

- INTEGRITY: <Include any data integrity issues>

with RTRVDATA_DBI;

package RTRVDATADBTR is
ption f vrocedures that make up the transaction

DATASERVE -NAME: exec RTRVDATA_'DBI;

end RTRVDATADBTR;

Figure 4. Example DBTR

0190 GTE Government Systems Corraton 9th Annual National Conference on Ado Technology 1991 156

DATABA4E TRJSAMTON SPECIFICATION
-~~ This ackagte is a desigen specifcation used bi Database Engineerinan
-~~ 51W Dve opment asa basis for ageemeilt ?or thie functioji the SQL
-~ Procedure is tovertorm. This Mirot be linked into an Aa executable.

t s rte nA. o ovnec only and does not represent the

- ABSTRACT:

- APC NAME: RTRV DATA DBI

- KEYWORDS: <Include any keywords>

- CREATION INFORMA77ON: <Enter Date and Author>
REVISION HISTORY:

DATE NAME SUMMARY
- <Enter revision information>

- PURPOSE: <Enter apu s fr the DBI (why stejt en
retrievedudtd inserted and h(w does it it into
the bigo pcure?)>

METHOD
DESCRIPTION:

<Enter a detailed description of the processing that needs
to occur>

SIDE EFFECTS:
<Enter any side effect information (e.g., a field is ypdated

- that causes a trigger to perform sonmc function - looking at
the stored procedure by itself would not necessarily show
that a side effect Wil occur)>

GENERAL ADVISORY/ERROR CONDITIONS:
<Specify error handling options, raise an error, return a

- status, etc. >
- NOTES: <Any notes that would be helpful in documenting the

DBI are included here. >

Figure 5. Example DBI (I of 2)

157 9th Annual Notional Conference on Ada Technology 1991 @ 1990 GTE Governimen Systems Corpoation

CALLING LIBRARY PROCEDURE:
<Specify package and calling procedure name>

DATABASE .,RVER LOCATIONS:
- <Specity which database servers this transaction will be applied against>

- DBDIST? <YES/NO indicates whether this is a distributed update across
servers>

- PERFORMANCE: <Include any performance issues for reference>

- FREQUENCY: <Include frequency of queries and updates (high,
medium, low)>

- CONCURRENCY: <Include any concurrency issues>

- INTEGRITY: <Include any data integrity issues>
EXTERNALS:

Datatype packages:
- <All data type packages are necessary to make sure they exisL >

package RTRVDATADBI is

- INPUT RECORD describes the order of the
_ input patameters sent to the database

type INPUT RECORD is record
Z Include all-data types in parameter order for stored procedure>- null;
end record;
tve OUTPUT RECORD is record

- lnclude all data types in order of retrieval (for bind statements) that
the stored procedure needs to return>

end record;

- DBGETMESSAGE RECORD describes the error parameters being returned*****from the database -

tvpe DBGETMESSAGE RECORD is record
- Describe any error mesanes that will be raised from the stored procedure

and the conditions that will cause them. >
null;

end record-
end RTRVDAtA_DBI;

Figure 5. Example DBI (2 of 2)

0 1990 GTE Government Systems Corporation 9th Annual National Conference on Ada Technology 1991 158

2 Training Requrements Redaue,, The
layered approach allowed coding of the actual calls to the
database server access library to be made by a limited
number of suftware/database engineers; therefore, only a
small portion of the engineering staff required detailed GE Government Systems
knowledge of how to interact with the database server. 1700 Research Blvd

Rockville, Md 20850
3. Database Server Problems Reduced

Since a new DBMS product was used, some problems Ms. McKay, a Software Engineer for GTE
occurred (due to bup and lack of product knowledge). Government Systems, has spent nearly four years designing,
Because the applications were insulated from the DBMS, developing, and implementing database intensive applications
those problems bad minimal impact on development of the using high-level languages such as Ada. She has worked on a
applications. variety of jects ranging from small protoye applications to

the very large database application descned above. Ms.
4. Interfaces Standardized. By using the McKay is prficien in the use of the Ada and C programming

templates and standardizing both the documentation and languages, relational DBMSs, and SQL, the ANSI standard
implementation of the interfaces, short-term development language supported by most relational DBMS products. She
costs and life-cycle maintenance costs have been reduced. has a BA. in Computer Science from the University of Maine.

In addition to the benefits derived from the layered
architecture described above, we came to the following
conclusions: GTE Government Systems

1700 Research Blvd
1. It is critical that database interactions be Rockville, Md 20850

documented as early as possible and that some formalized
method of documenting the interactions (e.., DBTRs and Mr. Pederson, Manager of Information Engineering
DBIs) be used. Without documentation, in large for GTE Governement Systems in Rockville, Maryland, has
applications, numerous coding problems and over 22 years of experience designing, developing, and
inconsistencies are likely, implementing a wide range of computer applications for

government and industry. He is familiar with a broad variety
I The layered approach becomes more beneficial of database management products and programing languages,

as the size of the application increases. For very small and has over four years of experience designing and
applications, this approach could actually increase the developing database-intensive, Ada applications. Previously,
amount of work required with little or no added benefit at GTE, Mr. Pederson has served as Manager of Database

Engineering and as software development manager. Prior to
coming to GTE, he was manager for the Federal Government.
Mr Pederson has a B.A. in English, with a minor in
mathematics, from Clemson University.

159 9th Annual National Conference on Ada Technology 1991 0 1990 GTE Government Systems Corporation

TASKING FACILITIES IN ADA: "THE CIGARETTE SMOKERS PROBLEM"

Tina L. Newsome

Hampton University
Hampton, Virginia

This paper outlines the issues rele- and smokes it. But to make
vant in developing a student project which a cigarette, three ingredi-
illustrates the use of parallelism to ents are needed: tobacco,
solve a problem using tasking facilities paper, and matches. One of
available in Ada. The problem addressed the processes has paper,
is "The Cigarette Smokers Problem" another tobacco, and the
defined in chapter 9 of Operating System third has matches. The
Concepts, by Peterson and Silberschatz. agent has an infinite sup-
Synchronization and communication between ply of all three. The agent
the tasks used to solve this problem are places two of the ingredients
facilitated thru entry calls and accept on the table. The smoker who
statements. Thus, thru the study of a has the remaining ingredient
simple problem relevant to concurrency can then make and smoke a
such as this, insight can be made into cigarette, signaling the
solving real world problems such as real- agent upon completion. The
time applications which involve concur- agent then puts out another
rency control. two of the ingredients and

the cycle repeats.

Concurrency is an issue which has To enhance the problem, the follo:in-:
evoked much interest because of the gains modifications were made to the above
which occur as a result of exploiting description:
concurrent (parallel) programming tech-
niques. Concurrent, as defined in 1) To facilitate complete random-
Webster's Third New International Dic- ness, each smoker requests his
tionary, means "occurring, arising, or ingredients from a distributor.
operating at the same time often in rela- The distributor distributes
tionship, conjunction, association, or ingredients arbitrarily. This
cooperation." This definition well ingredient recuest makes it
encompasses the goal of concurrent pro- possible for the smokers to
cessing; to allow naturally concurrent receive different ingredients
applications to be expressed as algorithms for making and smoking ciga-
which execute simultaneously and which rettes.
coordinate their activities efficiently
through synchronized communication. Sema- 2) To allow the maximum amount of
phores, critical regions, conditional parallel processing to occur,
critical regions, monitors, and message upon receipt of the remaining
passing are approaches used for managing two ingredients by a smoker,
concurrency and solving the synchroniza- the agent immediately places
tion problems associated with concurrency. another two ingredients on the

This paper outlines the issues rele- table, allowing the other two
vant in developing a student project which smokers to make and smoke a
illustrates the use of parallelism to cigarette if possible.
solve a problem using tasking facilities
available in Ada. The problem, specifi- 3) To facilitate complete fairness
cally "The Cigarette Smokers Problem", is and randomness, the agent will
defined in chapter nine of Operating never consecutively place the
System Concepts, by Peterson and Silber- same tiwo ingredients on the
schatz, as follows: table for processing.

Consider a system with three 4) To prevent deadlock, the table
smoker processes and one agent ingredients are replaced after
process. Each smoker continu- a significant number of unsuc-
ously makes a cigarette cessful rendezvous attempts

9th Annual National Conference on Ada Technology 1991 160

with the agent and no three rettes is simulated thru "delay" statements
processes will be distribu- which suspend the execution of the calling
ted the same remaining in- task for a specified number of seconds.
gredient. The task AGENT infinitely loops making

requests for table ingredients from task
The solution to this problem is im- DISTRIBUTE via entry calls and accepting

plemented using the following six active requests for those ingredients thru an
tasks. accept statement.

The task DISTRIBUTE infinitely loops
I) one id assignment task; accepting requests from the smokers and

the agent thru accept statements. A select
2) one agent task; statement is used to distinguish the entry

calls made by smokers from the entry calls
3) three smoker tasks; made by the AGENT. DISTRIBUTE simply

calls a random number generator to gene-
4) and one distributor task. rate ingredients.

Mutually exclusive access must be pro-
The task ID ASSIGNMENT assigns each smoker vided to the id assigner and the agent
task a number used for identification pur- when communication is necessary. When
poses. The task AGENT requests ingredi- making the request for an id, the smoker
ents to be placed on the table from the must be guaranteed that the id it receives
task DISTRIBUTE and accepts requests for is unique. In addition, it must be guar-
the ingredients placed on the table from anteed that requests for the table ingre-
the smoker tasks. The agent only passes dients made by the smokers are mutually
the ingredients if the requesting smoker exclusive. Only one process should be
has the remaining ingredient. The tasks able to access the table ingredients at a
SMOKER request an id number from task tine. Thus, the implementation of the
ID ASSIGNMENT, requests the remaining in- solution to this problem using entry calls
gredient from task DISTRIBUTE, and requests and accept statements is ideal. Mutual
the table ingredients from task AGENT. exclusion to the critical sections and
The task DISTRIBUTE accepts requests from data exchange for process communication is
the agent and the smokers for ingredients. provided by these mechanisms.
DISTRIBUTE simply calls a random number No major problems were encountered in
generator which generates integer numbers trying to implement this algorithm mainly
between zero and two, which correspond to because of the facilities provided by Ada
the ingredients. to guarantee mutual exclusion (a rendez-

The synchronization and communication vous mechanism which uses an implicit
between tasks are facilitated through queuing scheme) and the enhancements
entry and accept statements. This message added to the initial description of the
passing facility prohibits sharee data problem to ensure randomness and fairness
objects and permits only the sharing of (vhich also helped to prevent deadlock).
data values via parameter passing. Com- In conclusion, the exploitation of
munication betw:een two tasks occur when concurrency has proven to be instrumental
they rendezvous via the actual parameters in gains toward implementing applications
in the entry call and the formal parame- in parallel processing. As synchroniza-
ters in the corresponding accept statement. tion problems emerged, solutions to these
The task accepting the entry call causes problems were provided, each having its
suspension of the calling task until the own advantages and disadvantages. These
information is exchanged; the suspension solutions include semaphores, critical
lasts until the execution of the accept regions, conditional critical regions,
statement is complete. monitors, and message passing. Thus,

The tasks SMOKER iequest an id number various programming languages incorporate
by making an entry call to the task these mechanisms for process communica-
IDASSIGNMENT. ID ASSIGNMENT is a simple tion and synchronization allow:ing the
accept statement enclosed within a for structure of naturally concurrent algo-
loop indexed from 1 to the number of smo- rithms to be elegantly expressed. More
kers. The current for loop index is then specifically, Ada, as illustrated in the
passed back to the calling task as the id solution to "The Cigarette Smokers Problem"
number via the parameter list. The smoker implements message passing allowing pro-
then continuously makes and smokes ciga- cess synchronization, as well as the ex-
rettes by making a request for a remaining change of data between processes for
ingredient from the task DISTRIBUTE fol- process communication. Thus, with its
loved by a request for the table ingredi- tasking facilities, Ada can be utilizee
ents from task AGENT. These requests are to solve real world problems such as the
also represented as entry calls to the bounded buffer problem and problems
corresponding tasks with the requested associated with real time applications
ingredients being passed thru the parameter which involve concurrency control.
lists. The making and smoking of ciga-

161 9th Annual National Conference on Ada Technology 1991

'P" L
~~FA

9 -~T Z CA

CL

9thAnua NaioaC ofrneoAdTch lgy19 16

mm mumm

REFERENCES

1. Gehani, Narain. Ada: Concurrent Pro-
gramming, pp. 14-26, 1984.

2. Peterson, James L. and Silberschatz,
Abraham. Operating System Concepts,
Addison-Wesley Publishing, Massachu-
setts, 1985, pp. 366.

Tina L. Newsome was
born on October 29,
1968 in Lanham,
Maryland. She re-
ceived the B.S.
degree in computer
science from Hampton
University, Hampton,
Virginia, in 1990.
She joined AT & T
Bell Laboratories,
Middletown, NJ, as
a Member of Techni-

cal Staff, in June 1990 and is currently
pursuing a M.S. in computer science at
the University of Maryland, College Park,
Maryland.

Ms. Newsome has served as chair and
vice-chair of the student chapter of the
Association for Computing Machinery at
Hampton University and is a member of
Upsilon Pi Epsilon.

163 9th Annual Nafional Conference on Ada Technology 1991

Adopting Ada as a Primary Undergraduate Programming
Language

Maj JJ Spegele, USMC and Dr. E.K. Park
Computer Science Department
United States Naval Academy

Annapolis, Maryland 21402

Abstract ber of concerns and problems that may be associated with
using Ada in an academic setting, we see the following as

Ada usage, as a general programming language in under- the critical issues:
graduate institutions, has generally lamed industry demand
for Ada-trained programmers and an, ysts. This paper dis- 1. Language design and the nature of academic program-
cusses critical issues associated with adopting Ada as a pri- ming.
mary programming language in undergraduate curriculums.
Three specific issues, as they relate to Ada, are addressed: 2. The availability of tools appropriate for use by inex-
Language design and academic programming; compiler re- perienced undergraduate students.
quirements for academia; and techniques for teaching pro-
gramming to undergraduates. 3. Faculty experience and course syllabus.

In this paper, we will address each of these critical is-
sues as they apply to implementing Ada in undergraduate

1 Introduction curriculums (both computer and non- computer related dis-

Commercial acceptance of the Ada programming lan- ciplines).

guage has been, and continues to be, impeded by a lack
of Ada-trained programmers, analysts, scientists and engi-
neers. For most individuals, initial exposure to program-
ming occurs during their undergraduate educational expe-
rience. Universities have traditionally played a critical role 3.1 Language Design
in satisfying industry's demand for individuals familiar with
commercialprogramming languages such as C, FORTRAN, In the mid-1970's, the Department of Defense (DoD)
Pascal and Assembly. More importantly though, students identified the need for a state-of-the-art programming lan-
develop strong opinions about the suitability of particular guage to be used by all the military services in embedded
programming languages during their undergraduate educa- (or mission critical) computer applications[]. Following a
tion. Student biases gained during these formative years competitive design process, Ada was selected as the lan-
remain with them long after they graduate. The slow ac- guage that could best satisfy the need for DoD embedded
ceptance of Ada in academia has hampered the general ac- systems.
ceptance of the language throughout industry. The primary objective of standardizing on Ada, was to

Today, organization desiring to develop systems in Ada reduce the cost and time to develop DoD software. In gen-
are either forced to absorb the cost of training their own eral, designers determined this was best achieved by enforc-
Ada programmers, or to hire previously trained Ada pro- ing good design and disciplined programming. Specifically.
grammers at a substantial premium. For many firms, this some key design goals were to[2]:
additional cost associated with Ada systems development
is unacceptably high. Additionally, most organizations are 1. enhance program readability.
understandably reluctant to adopt an unfamiliar language
for any critical or commercial systems development work. 2. require strong typing.

Acceptance of Ada as a widely used, general purpose 3. support programming in t-,e large.
language is based, in part, on undergraduate institutions
exposing students enrolled in technical curriculum to the 4. support exception handling.
language. This Ada exposure may range from cursory us- 5. allow for data abstraction.
age, in an introductory course, to exclusive use throughout
a curriculum. 6. support concurrency.

7. allow for software reusability.
2 Objective Ada was subsequently chosen because of its ability to

Transitioning to a new language is a non-trivial task for support the development and maintenance of large, com-
any organization. Our objective is, based on our experi- plex systems through the application of software engineer-
escs, to provide insight into the difficulties that may be ing principles such as information hiding, abstraction, and
encountered, and more importantly offer suggestions that specification. It cannot be inferred that all code devel-
will smooth the implementation. While there are any num- oped in Ada is inherently well-engineered; rather Ada, when

9th Annual National Conference on Ada Technology 1991 164

used properly, supports the development of well-engineered, computer engineering, software engineering); and Ada as
maintainable systems. a general purpose language for technical disciplines (engi.

The language has had unprecedented success in achiev- neering, mathematics and other sciences).
ing the design goals for which it was intended. Numerous Using Ada as a primary language for computer.related
systems in operation, or under development are a testimony disciplines has significant advantages. First, language fea-
to Ada's viability as a language of consequence. Ada is un- tures directly support traditional computer science topics
questionably a significant advancement in the history of including data structures (generics); operating systems (tas-
programming languages. ks), software engineering, and real-time systems. Second,

students who are exposed to Ada early in their course of
study incorporate fundamental software engineering prin-

3.2 The Academic Programming Envi- ciples in the design and development of their projects. Fi-

ronment nally, the language can, in most cases, be used exclusively
throughout the course of a computer-related curriculum.

An academic programming environment bears little re- The ability to reinforce understanding and use progressively
semblance to the "real world" of applications development, more advanced features of a single language is invaluable.
Academic programming is usually done to achieve some Our experience has shown that students, who have some
specific, short term goal in order to satisfy course require- previous exposure to a high level language (C, Pascal, etc.),
merts. Specific characteristics of the majority of program- and who subsequently use Ada over a number of semesters
ming done by most undergraduate students in an academic have little difficulty learning and correctly using Ada. In
setting are: fact, when provided an opportunity to chose between alter-

1. Programs are characteristically short. Progam length native languages many prefer to work in Ada, particularly
rarely exceeds 1000 source lines of code (SLOC); for most when involved in large (by academic standards)projects.
introductory courses, programs are generally under 100 SL- In contrast, teaching Ada, as an introductory course to
OC. a general population of students with little or no program-

2. The project life cycle is compressed. Student projects ming experience, is considered extremely difficult. The fun-
rarely extend beyond a few weeks; the majority are com- damental problem is found in the power of Ada. When
pleted within a week. constrained to the narrow confines of a simple classroom

3. Projects are disposable. Applications developed are example, it can often inhibit the learning process.
rarely reused - even within a single course. Source code The language is a powerful tool that, in the hands of an
is designed, developed and then routinely disposed of as expert, produces well-designed, elegant solutions. The lan-
soon as the project is assigned a grade. There is rarely (if guage's features however, can overwhelm the average stu-
ever) a maintenance phase for code developed in support of dent struggling to produce a 50 line program. For example,
academic courses. rather than appreciating the power of generic packages, the

student trying to do simple input/output is left wondering
4. Projects are solution oriented. Academic program- why the language requires instantiating packages in order

ming assignments are designed to support the concepts de- to write a real number. This adds a level of complexity
veloped in class. In technical courses, the application of this not appreciated by the student, and in some cases not corn-
concept to aid understanding is the primary goal. Most sci- pletely understood by the faculty member.
entists and engineers are result oriented; they are not gen-
erally concerned with the underlying code. Programming For those not familiar with Ada, the following example
is viewed as a means to solve, or verify, a single problem or is provided. Most beginning programmers would be able
concept presented in class. to recognize that the Pascal program Demol will halve a

5. Projects are isolated applications. For most course user-supplied integer value.
work, students develop solutions in parallel. Rarely do they
work in groups that are responsible for individual compo-
nents of the overall system. In addition, programs devel-
oped by students rarely require an interface to external li-
braries, or routines. program Demol (input, output);

6. Project design and testing are abbreviated. Little var
effort is required, or dedicated to the desigi, of the applica- x :integer; y : real;
tion. The design phase is often completely overlooked be- begin
cause the student proceeds directly from problem definition writeln('Enter an integer value to be halved.');
(given by the faculty member) to development. Likewise, readln(x);
the testing phase is generally limited because of due-dates y := x/2;
and student ambition. Students frequently assume that a writeln(x,' ',y:0:2);
successful run, implies testing is complete. end.

3.3 Ada in an Academic Environment The corresponding code to accomplish the same task in

The preceding discussion highlights the conflict between Ada could be written as
Ada's design goals and the academic programming environ-
ment. Unfortunately, there is little relationship between de-
veloping large applications systems and academic projects.

In discussing the use of Ada for academic coursework,
we will consider two distinct environments: Ada as a lan-
guage for computer-related disciplines (computer science,

165 9th Annual National Conference on Ada Technology 1991

the user already understands the language - an assumption
I with Text-IO; that cannot be applied to academic programming. Thus,
2 use Text.IO; tools, applications, and even languages intended for use in
3 procedure Demo is one environment are not necessarily appropriate, or desired
4 package Integer.lnOut is new Integer.lO(Integer); in the other. For example, Pascal was originally designed
5 package FloatInOut is new Float-lO(Float); as a teaching language. Pascal's popularity as a language
6 use Integer.InOut, FloatInOut; of choice in many universities however, is not reflected in
7 x : integer := 1; its usage as a commercial applications development Ian-
8 y: float; guage. Similarly, professional programmer's workbenches
9 begin which significantly improve programmer productivity, pro-
9 putline("Enter an integer value to be halved"); vide tools for which in an academic setting would have little
10 get(x); or no utility. Programming tools must support the charac-
11 y := float(x)/2.0; teristics of the environment for which they are intended.
12 put (x);
13 put""; The availability of personal computers in undergradu-
14 putiline(y, FORE => 0, AFT => 2, EXP => 0); ate institutions has had a profound impact on how students
15 end Demo; program. This ready access to a personal computer, either

in school labs or as student-owned systems, has caused an
irreversible change in the methods used to teach program-

A cursory glance at these two programs highlights the ming. Personal computer programming languages andtheir
overhead associated with using Ada. Unfortunately, over- supporting environments, are generally fast, cheap, easy to

head impairs learning - especially for the novice. Experi- use, and yet powerful enough for even the largest student
ence has shown that explaining the concept of instantiating projects. There is a fundamental truth that has evolved:
packages, as shown in lines 4 and 5, to a beginning program- Any programming language used by an academic institu-
mer is a difficult concept. In addition, Ada's strong typing, tion must be adequately supported on personal computers.
a significant advantage for software engineers, requires co- Evidence of this truth is in the preponderance of teach-
ercing X to type float on line 11. Strong typing then exacts ing materials targeted for any number of popular PC-based
a punishment on the student struggling to understand why programming languages (Pascal, C, C++, BASIC, etc.).
anyone would want to type a variable. Finally, Ada's fa- In teaching Ada we have found that a minicomputer-
cility for supporting text input and output is a constant based compiler is not the optimal environment for learning.
source of confusion for projects which are typically I/O in- The language is complex enough without the burden cause
tensive (lines 9-14). Unlike Pascal's relatively simplistic by interacting with a hostile editor and an unfamiliar op-
(and forgiving) read(In) and write(In) statements, Ada's erating system. This is especially true for any introductory
corresponding Put(line) and Get(.Jine) procedures are de- Ada course. Experience has shown that a large number
pendant upon the parameter type. of students all compiling and editing relatively small Ada

This small example demonstrates how difficult the]an- programs on departmental minicomputers can dramatically
increase response times to unacceptable levels (10 minutesguage can be when applied to simple, introductory prob- or more). The result is an unacceptable delay in completing

ems. Ada's robustness often translates into increased con- each compile, link and run cycle. This delay and ensuing
fusion on the part of the student ill-equipped to properly frustration is a major obstacle to student learning.
use, let alone understand Ada constructs. Undergraduate
programming language faculties are well aware there is a One solution is to use personal computer based Ada
direct relationship between the number of lines of source compilers thereby distributing processor demand over a larg-
code and the likelihood a project will fail to compile and/or er number of smaller processors. A PC Ada environment
execute. appropriate for academic use by students and faculty alike.

For simple student projects, Ada's power, if not masked, should, as a minimum, have the following characteristics:
can actually inhibit the learning process. The primary pur- 1. Hardware requirements. The compiler should be ca-
pose of any introductory course should be to teach the pable of operating within 640Kb of memory - with support
fundamentals of problem solving using the basic constructs for using extended memory as either a virtual disk to speed
associated with any programming language (sequence, se- compilation or for compiling larger programs.
lection, iteration). This emphasis on problem solving vice 2. User Interface. The compiler must be surrounded by
syntax will serve the individual - long after the syntactic a easy to use graphic interface. This interface should use the
peculiarities of a specific language are fo-gotten. normal combination of menu ba, .rd windows commonly

In general, we have found that teaching Ada over a series found in most major PC applications.
of courses to students who are strong programmers, is a 3. Language Sensutive Editor. The editor should sup-
challenging, but not impossible task. In contrast, those 3. Langa nml d Te eitor od sup-
with limited or no programming experience who learn Ada port both a normal and a lan uage sensitive mode. Edi-

as her itrducor lagugewill simply be overwhelmed, tor commands/keystrokes should be an adaptation of those
as their introductory language wfound in one or more of the most commonly used editors

available.
3.4 Compiler Requirements for Academia 4. Debugging support. The environment should support

a syntax checker capable of identifying most syntactic er-Faculty who teach programming languages know all too rors, prior to compiling. In addition, error messages shouldwell that teaching syntax is only half the battle. Correctly incorporate not only the mandatory reference to the Lan-using the language by applying it to a problem is the other guage Reference Manual, but also a supplemental message
half. To support problem solving, students require compi- guae Refrence Mna t o au m l glation environments that support learning a language. more appropriate for the novice.

5. Interface to Libraries. Any PC-based Ada envi-
By their very nature, commercial compiler tools assume ronment should be supplemented by a variety of libraries

9th Annual National Conference on Ada Technology 1991 166

unique to the PC environment. Units must support inter- support of abstract data type operations. Students should
faces to common PC peripheral devices (keyboard, mouse, also continue to build upon all Level I topics, especially in
monitors), low-level operations and finally provide an inter- using predefined packages. The Booch components are a
face to the operating system. typical sourcet3l.

Validated compilers that meet these basic requirements Finally, after significant academic programming experi-
are becoming available on the market. However, when pur- ence is achieved, advanced topics such as generics, excep-
chased on an individual basis, the cost is still generally pro- tions, and concurrency could be addressed. These language-
hibitive for the average student. specific features are most appropriately covered in an ad-

vanced programming course, or as part of a software en-
gineering course. Because of the level of Ada experience

3.5 Teaching Techniques achieved at this point (both with the language and the com-
piler environment) students will be capable of developing

An adequate compiler and environment is a prerequi- much larger and more sophisticated applications. Ideally,
site, but not a substitute for teaching technique. The best faculty would emphasize the importance of completing a
user interface will never overcome a poorly designed course fully compiled specification prior to proceeding with the
of instruction. Ada's size and complexity makes this par- coding phase.
ticularly important - the language is simply too large to be
approached in a haphazard manner. The advantage of this incremental strategy is that a

course is no longer a slave to the language. Emphasis shifts
Teaching a programming language though, should never from that of "teaching" Ada to using Ada as a tool to re-

be accomplished at the expense of the underlying ability inforce learning. By spreading the learning of the language
to apply a program to solve problems. Too frequently we over multiple courses, the student will more likely develop
find students who have "learned" a language but cannot problem solving skills.
apply the constructs to solve trivial problems. Unfortu-
nately, these students did not learn how to apply a partic- The emphasis on language features at the expense of ap-
ular language, but rather were taught a language syntax. plication is a criticism that applies to most "introductory"
An overemphasis on syntactic issues obscures what should Ada texts. As a general rule, these programming texts
be gained in any fundamental programming course - fun- are often an expansion of the LRM. Unfortunately, many
damental problem solving skills. Ada texts are presented in reverse order, covering abstract

concepts such as generic packages and derived types before
Most programming texts, and Ada texts in particular, addressing basic language constructs. Faculty must avoid

encourage an emphasis on syntax and style issues. For ex- adopting this approach simply for convenience - it will only
ample, introductory Ada texts frequently address abstract serve to confuse the student.
concepts such as packages prior to covering essential lan-
guage constructs such as selection or iteration. Thus, the An unseen advantage of the incremental approach to
student is exposed to the verbiage of the language before learning Ada is that each stage is, in itself, sufficient. That
knowing how to apply it. is, the tools provided in Level 1 are adequate to support

most quick, no frills, programming tasks associated with
Ada is simply too large and complex to be learned in a an undergraduate engineering project. Again, the student

single course. To do so only shows the student Ada syn- gains experience with only those constructs needed.
tax with minimal opportunity for practical application. In-
stead, students should be exposed to syntactic constructs Many will argue this defeats the purpose of Ada, as
and progaming structures concurrent with an appropri- a software engineering language. That somehow restricting
ate level of programming maturity. As an axiom to the the language to its simplest form encourages inelegant solu-
principle of Information Hiding, students should only be tions that don't exploit Ada unique features. The counter-
see the tools they will really need - and nothing more. argument is that Ada provides a suite of tools, from which

To avoid burdening a single course with the full range the user selects depending upon experience and project
of Ada, curriculums using Ada should distribute language- characteristics. Large, commercial systems with long life-
specific topics over multiple courses. Figure 1 depicts three cycles demand elegant, well-engineered solutions: for small-
levels of Ada teaching: Intermediate, Introductory and Ad- student projects beauty takes a back-seat to functionality.
vanced. Each of these levels could easily be accomplished Levels 2 and 3 then, provide advanced features required
within the contents of a course in a single semester. by students developing more sophisticated applications in

Level 1, Introductory, is designed to teach the tunda- support. Typically, these students would be in a computer-

mental concepts found in all high-level programming Ian- related curriculum. Again, as the concepts and program-
guages. Topics such as iteration, selection, and the correct ming tasks become more sophisticated, the students are

use of assignments statements are covered. Note that coy- taught additional tools to support their efforts.

erage of Ada types is limited to standard types - for the
most part there is no need cover derived types as part of a 3.6 Ada for the "Masses"
language introduction. Programs to exercise student under-
standing should remain very small. Programs that exceed Exposing a general student population to Ada is not
200 lines in length are unwieldy and counter-productive. viewed as a simple task. Prerequisites for any institution
Input and output should be limited to covering simple ter- attempting to teach Ada as a primary undergraduate lan-
minal and text file I/O. guage are:

The next stage of language learning could be associated 1. A well-trained and supportive faculty.
with a CS2 or typical Data Structures course. The emphasis
is on defining and using abstract data types and applying 2. A well-designed PC-based Ada compiler environment.
access type to the manipulations of more advanced data
structures such as lists and trees. As they progress, students 3. Selection of texts designed for the novice - not expe-
should be taught how to use and write Ada packages in rienced programmers.

167 9th Annual National Conference on Ado Technology 1991

Level I Level 2 Level 3
lntoductory Intermediate Advanced

Topics standard ty s derived types generics
- integer subtypes exceptions
- float access types concurrency
- character private types
- suing unconsu'ained arrays
- boolean records

control sements packages (writing)
- asssignment binary files
- if-then - sequential and direct
-loop
- case

input and output
- text (file and terminal)

arrays
- single
- multi-dimensional

subprograms
- functions
- procedures

- scoping rules
packages (using only)

Recommend Average - 100 Average - 350 Average - 750
Project Maximum - 200 Maximum - 700 Maximum - 2000
Length
(SLOC)

Taught in Any introductory program- Data Structures Course Software Engineering
ming course (CSI) (CS2)

Figure 1. Three levels of Ada teaching

4. An introductory syllabus limited to those topics iden- The recent availability of PC compilers appropriate for
tiffed in Level 1. student use makes possible the wide-spread use of Ada in

an academic environment. This language, however, is so
In an optimal environment, students will have used a extensive that a single course cannot adequately cover its

high.level language (preferably C or Pascal), before attempt- contents. A combination of careful planning and" the use of
ing an introductory Ada course. Students with no previous appropriate tools must be used if the adopting Ada is to be
programming experience will be at a significant disadvan- succesful.
tage which may result in unacceptably high failure rates.

4 Summary References

This paper has discussed three critical areas associated
with the introduction of Ada as an undergraduate pro- [1] Barnes, J.G.P., Programming in Ada, International
gramming language. Ada was clearly not designed as an Computer Science Series, Addison-Wesley, 1984.
academic language but its ever increasing importance in
industry results in a critical shortage of Ada-experienced [2] MacLennan, B. J., Principles of Programming Lan-
graduates. guagues, Holt, Reinhart and Winston, 1987.

9th Annual National Conference on Ada Technology 1991 168

[31 Booch, G., Sofware Components with Ada, Ben-
jamin/Cummings Publ Co., 1983.

E. K. Park received his PhD in Computer Science from
Northwestern University. His research interests include soft-
ware engineering and Ada, distributed computing, Ada for
parallel processing, and fault tolerance. Dr. Park is cur-
rently on the faculty of the Computer Science at the United
States Naval Academy.

Maj JJ Spe~ele is a Marine Corps Data Systems officer
presently assigned to the U.S. Naval Academy as a Com-
puter Science Instructor. He has recently taught a variety
of undergraduate courses in Computer Science with an em-
phasis on programming languages and software engineering.

is previous billets include tours as an Information Systems
Management Officer, Systems Analyst, and Programming
Officer at major Marine Corps Data Processing facilities.
He is a 1978 graduate of the Naval Academy and holds
Masters degrees in Computer Science and Information Sys-
tems Management from the Naval Postgraduate School.

169 9th Annual National Conference on Ada Technology 1991

CLASSROOM ACTIVITIES FOR AN ADVANCED ADA CLASS
Freeman L. Moore

Texas Instruments Incorporated
Dallas,Texas 75265

1.2 Instructor Competence

We believe the success of any training intervention depends
An Ada fundamentals course is briefly described to provide highly upon the caliber of the staff. We have been fortunate
the backgroundfor anAdvancedAda course. The Advanced to have trainers who have a solid computer science
Ada course builds upon the knowledge learned in the background, and practical on-the-job experience within
fundamentals course. While the fundamentals course Texas Instruments. We encourage our trainers and course
presents all of the language concepts, sufficient time is not developers to consult with projects as a means to maintain
provided for exercising all of the language concepts and their credibility.
features. The Advanced Ada course specifically deals with
team progranming in its various activities. The activities 2. Ada fundamentals class
places an emphasis on reinforcing techniques, not syntax.
The course provides an environment for structured The Ada fundamentals class will be briefly described in this
experimentation, where information from existing projects section. This five day course provides for approximately 25
is funneled back into the class as part of continual course hours of lecture and 15 hours of hands-on programming
improvements. activities. The class normally meets every other day over a

two week period. The class has a prerequisite of knowledge
1of a high-level language, although there have been a few

attendees with only assembly or Fortran background.
Texas Instruments has been providing Ada training to its
engineers since 1983. We developed our internal training 2.1 Hands-on Environment
program to be tailored to the needs of the Defense Systems
and Electronics Group (DSEG) with Texas Instruments. Attendees receive a "Course completion certificates" upon
The mandate from the DoD was that more projects would be completion of the course. This requires successful
required to code in Ada. We responded by developing an completion of at least 80% of the programming activities.
Ada fundamentals course and an Advanced Ada course. The instructors are responsible for documenting which

programming activities have been completed. This is
1.1 Software Engineering and Ada measurable because of our insistence of one-person to

one-machine in our classes. The programming labs have
Developing an internal training capability requires the detailed instructions for the students. These directions focus
integration of several topics. College graduates may be attention on getting the task finished in a timely manner, and
proficient in C or Pascal, but may not have had exposure to make sure that learning objectives are met. As time permits,
Ada, real-time programming, DoD standards and students are encouraged to try their own ideas and examples.
requirements, or much team programming experience. In
short, our training program must deal not only with the lack 2.2 Change of Hardware Platforms
of knowledge about the Ada language, but also the lack of
software engineering as applied to DoD software When the goal is to learn the language and application of
development. Grady Booch's book is a classic, and we various features, the choice of an Ada compiler and
strongly support its use to tie together the language and its supporting environment does not matter much. However, it
intended usage.[6] We have developed our own software should be easy to learn, and similar to the job environment.
engineering workshop which introduces employees to Our course has undergone three changes in machine
DoD-STD-2167A and its applications within DSEG. environments before settling on the current environment,

using a PC-AT compatible machine. We are presently using
Since we are providing training, not education, the challenge IntegrAda TM, but a change is possible soon.
is to make the training opportunities as reflective of
on-the-job requirements as possible. It is difficult to locate To illustrate the portable nature of the work students have
examples which apply uniformly to our audience. This paper done, a tasking program developed on the PC is uploaded to
will identify some of the programming activities covered in the VAXTM and executed using DEC-Ada. This provides the
our Advanced Ada course. opportunity to relate the two programming environments,

9th Annual National Conference on Ada Technology 1991 170

and demonmate commonaities between the library the experiences of various projects with DSEG, and to
environes,andexpectedcapabiities. include that knowledge within the class to benefit future

attendees.
3. Advanced Ada class

3.3 Teams vs. Individuals
This section describes the Advanced Ada class and some of
its progranuing activities. The course was first developed The fundamentals course is individual-based to provide the
in 1985, and has undergone several revisions based upon opportunity for everyone to become actively involved in the
feedback of prior students, and project experiences about learning process. The advanced course is team-based. By
what Ada language features are encouraged and what are that, most of the programming exercises involve team effort
discouraged. The Advanced Ada assumes a working involving two to four people. For example, members of the
knowledge of the Ada language syntax. This class uses that team develop separately compiled procedures for a package
knowledge in a series of activities to reinforce concepts, body. This provides the opportunity to learn working issues
explore issues, and in general, learn what not to do. The as they might apply back on thejob.
course is four days, generally meeting for two days, off one
day, theniaeetingfortwomore days. ACTIVITY: graphical design notations, analyze tasking

requirements
The course does not use a specific book for a text.
References to several book are given in the course notes A case study is provided which describes a message
which students receive. We recommend Cohen, Buhr, switching system. The instructor acts as the customer,
Sommerville, and Neilsen as good references.[1, 2, 7,8] providing the class the opportunity to ask question and

clarify the problem requirements. From the functional
3.1 Is It Really Advanced? requirements, each team determines the top-level CSCI

which will become Ada packages, and begins to identify
The course is for people who have already had an some of the components of each package.
introductory Ada course, and want to deepen their

Most of our students have also attended an Object-Oriented
Structured Analysis / Design course, and are familiar with
the transformation scheme notation of Paul Ward. We

OUTLINE encourage the use of graphical design methods, and use the
concept of Ada structure graphs as developed by Ray Buhr.

DAVI VAYz DAY3 DAY, Ada structure graphs are used to document the top-level
LANGUAGE PACKAE TASKU LANOUAQS design. Some students will be using TeamworkTM to help in
USES US ECONIQUES INRACINO the design process.

MN GENIC RPCIENCY/ LOW LEVEL Although we don't have access to Teamwork in the
NOTATIO? PEAFOS.~CE MA.PRE classroom, students work together in teams to document the

design with paper sketches. These designs are presented to
the class as a whole in a short design review. Teams are
expected to have sufficiently analyzed the problem to

Figure I determine the number of tasks required, and the type of
rendezvous mechanisms needed. (time = 3 hours)

knowledge of the language semantics and applications. The
key point is 'deepen', since our fundamentals course This case study is revisited in several of the later activities in
presents all of the features and syntax of the Ada language. the course, with smaller activities developing portions of the
However, within a five day period, there simply is not final implementation. Having a significant case study (10
sufficient time to exercise every language features, nor get packages, about 800 lines of code) can be difficult in a
involved in discussions regarding style and usage compressed amount of time, but the benefits of working on
considerations. something this size is worth the problems.

3.2 Course Rationale ACTIVITY: private data types, separate compilation in a
team environment

Since the assumption is made that people already know the
language, we have found that this course is necessary since it A simple package specification is provided (figure 2). Using
provides a refresher for those who have not programmed the WINDOW package, teams work together in a
much with Ada lately. The course also a structured programming environment, where each team member is
opportunity to try ideas in an environment that may not be provided with the pseudocode for a procedure. To reinforce
possible on the job. Lastly, the course is structured to reflect the idea of private data types, each team is given with a

171 9th Annual National Conference on Ada Technology 1991

WI DOW b p ka CONIO i.

,.b,. X_CDRMA Is ,-,un I - ft. pteedum PUT (ITEM in CHARACTER);
aft" T_€oORwKAIM b ,... I - U, prcedur PUr(EM: in STRiNG);

#maws (xj zr. vrI iMO6RD4ATI-m r TEM •: in NTEGER)k

yyiroh . Yjow: in YCOOMATh)
(is..wnwowOYM_ : pmedum GET (fl!M out CHAPtACRIR).

p EN,,, OW, (nns: .. o ow-Typs k ptucedure GET (ITEM: out STRING);

p..&,. O0oT (in rXCOORDPA'1 pcedum GET(TEM: out NTEGER):
: in Y-COORMDuAThI

r*i oZA3 WDOW:
ndm t, r(x'Ri cu GET_..LINE (ITEM :out SING LAST: out NATURAL);

11L .COOtEMA - m NEWLD

Lm80AZ-MMOW Mp funtw ISCHARACTERtAVAILABLE Mum BOOLEAN;

-,mpldb w sad ,e CONIO;
MiWDDOW.

Figure 2 Figure 3

different private portion of the package, where the instructor ACTIVITY: device control programming, using the serial
defines the data structure. The team must establish any local port
data structures before individual members write their
procedures. After writing the procedures, the members must Each computer in our classroom has two serial ports. One
get back together to integrate their procedures together with port has a mouse connected to it, and the other serial port is
the package body, and test it with an instructor main connected to the serial port of the adjacent machine. After a
procedure. discussion of low level features and representation features

of Ada, the basics of programming the serial port are
Acommonproblem in understanding the problem deals with presented. Teams of two work together to complete the
the coordinates of the window; that is, being consistent with instructor supplied package serialio. Teams must develop a
numbering rows and columns of the window and the screen. main program which accepts characters from the keyboard,
For people who have just completed the fundamentals class, and sends them to the other computer via the serial port.
this simple exercise reinforces the use of private section of a Packages conio and serial_io are used. Some students have
package to hide data structures. They realize this when added the window package to their communications
different teams have different structures to implement, yet program to have one window show the input, and a second
the package specification and main program are the same. window to show the output. (time = 2 hours)
For the relative newcomers to Ada, working in a team setting
establishes the importance of fixing the global data ACTIVITY: package machine.code and simulators
structures defined in the package body before working on
any of the 'is separate' procedures. (time = 2 hours) Because of our job environment, there is a much diversity

between processors and compilers needed by various
ACTIVITY: understanding text io by writing conio projects. Our training environment is not able to provide

specific hands-on training to address all concerns relevant to
Everyone has used textio before, and this often generates all compilers. One particularly challenging problem has
discussion in the class that text io is not needed by the been trying to develop a programming activity which works
various projects because of their embedded real-time nature. with package machine-code.
Discussion moves to development of test packages, and
most people agreeing that some type of I/O is useful, We have access to the Tartan Ada/1750 compiler and
however, not a full-blown textio package. A package is simulators running on a VAX environment. This activity
presented (figure 3) that provides a minimal amount of involves completing a short Ada procedure by writing two
character input/output. To start the programming lab, the subprocedures which are completed with package
instructor supplies low level test for character, get character, machine-code. After compiling, the programs are run
aid display character routines. Given these 3 primitive through the simulator and students verify that their assembly
routines, the teams get together and start developing the instructions were executed. The difficult part of this lab is
routines identified in the specification for conio. providing a simplified set of directions for a new compiler

and simulator. We admit that this activity does not provide a
This activity reinforces the nature of textio, in particular lot of experience in machine.code. However, reports from
realizing that the input of a string variable expects the students show that the lab is needed to provide a boost to
mumber of characters equal to the length, not a string ended understanding how to interface with other languages.
by carriage return. (Time = 2.5 hours)

4. Course and Job relevance

9th Annual National Conference on Ada Technology 1991 172

The Defense System md Electmnics Group of Texas Ada course. The key thrust has been on describing a
Iaiumtsm wod with a variety ofhardware processors and structured environment where teams work together on
compilers. Because of resource limitation, we cannot different activities to reinforce their knowledge of the Ada
develop specific training for each processor / compiler programming language.
combination. Our Ada fundamentals course provides
training using a PC-based compiler. The advanced course It has been identified that the cost of the first project done in
activities described in this paper use a combination of Ada will be higher than if it had been done with a more
PC-based compiler and VAX-based compiler activities, conventional language. Providing a structured learning
Handouts are provided on benchmarks of various compilers environment where people can practice the ideas and
used within Texas Instruments, concepts they will need for efficient applications is

necessary. This is precisely what we have attempted to do
Except for package serial-io, we have refrained from with ourAdvanced Adacourse.
developing MS-DOS specific software in the class. We need
to stress the portability nature of Ada, and that initial
development can be done in one environment, and then
ported toa final test environment. References:

4.1Learner 1. Sommerville, Ian and Morrison, Ron, Software

With the Ada fundamentals course being 40 hours in length, Development with Ada, Addison-Wesley.

and the advanced course being 32 hours, this represents a 2. Buhr, R., System Design with Ada, Prentice-Hall.
considerable amount of time away from the job. We are
being asked to document that training is an effective use of 3. Wu, Y., "Teaching Software Engineering with Ada", 8th
time. The fundamentals class includes a pretest and posttest AnnualNationalConference on Ada Technology, 1990.
activity to measure leaning, along with requiring completion
ofkey activities. The advanced Ada course does not yet have 4. Joiner, J., "A First Programming Exercise Using Ada
a posttest, but there is a pretest activity to determine the Tasking", 8th Annual National Conference on Ada
current capabilities of the students. The instructor is Technology, 1990.
responsible for documenting that all team members work
togethertowards completion of the team's goals. 5. Schmidth, D., "Ada in an Embedded Real-Time

Environment", 8th Annual National Conference on Ada
We have been satisfied with the fundamentals course for the Technology, 1990.
past few years. We anticipate a possible change in compilers
soon, along with a more objective-oriented pretest/posttest 6. Booch, G., Software Engineering with Ada, Benjamin-
mechanism. Reports from previous students show that the Cummings.
fundamentals class with its emphasis on learning the
object-oriented design and Ada language features and 7. Nielsen, K, & Shumate, K., Designing Large Real-Time
syntax, is well constructed. Systems with Ada., McGraw-Hill.

4.2 Environment for imwntmion 8. Cohen, N.,Ada as a SecondLanguage, McGraw-Hill.

The advanced course has always stressed team activities Author'saddress:
instead of individual work. Our direction in developing the
course was to provide a structured environment where Freeman Moore
students can explore ideas and raise questions about Texas Instruments ncorporated
efficiency and variations in techniques. Feedback from P.O.Box 650311,M/S: 3928
students indicate that the advanced course packs a lot of Dallas,Texas 75265
activities into four days, all of which are necessary.

0fmoore@skvax I .csc.ti.com

Texas Instruments has had an Ada curriculum since 1983.
Ada training is just one part of the software engineering
curriculum which undergoes continual refinement to
provide the optimal training for the current job environment.
This paper has briefly defined the need and outline of a basic
Ada course and an Advanced Ada course. The paper has
concentrated on some of the activities used in the Advanced

173 9th Annual National Conference on Ada Technology 1991

ARCHITECTING DISTRIBUTED REALTIME ADA APPLICATIONS:
THE SOFTWARE ARCHITECT'S LIFECYCLE ENVIRONMENT

Walker Royce and David Brown
TRW Systems Integration Group

One Space Park (DH1/2737)
Redondo Beach, CA 90278

(213) 764-3224

Abstract

TRW has completed the development of a reusable soft- We have recently expanded the NAS suite in two dimen-
ware chipset known as Universal Network Architecture sions:
Services (UNAS) for the Command, Control and
Communication (C3) application domain. To exploit the in- 1. elimination of NAS' VAX/VMS dependencies through
herent productivity and quality advantages of standard soft- repackaging and redesign into a Universal NAS (UNAS)
ware components, we have also developed a Computer Aided product which is portable to multiple target platforms,
Design capability known as the Software Architect's Lifecycle and
Environment (SALE). SALE automates the architectural ob-
ject bookkeeping and provides interactive feedback to guaran- 2. expansion and integration of UNAS tools into a knowl-
tee correct structural syntax and semantics. SALE also encap- edge based CASE tool called the Software Architect's
sulates the UNAS knowledge base so that the logical design Lifecycle Environment (SALE).
for the software architecture can be committed to error free ex-
ecutable Ada source code automatically along with optional Ile previous generation of NAS support software pro-
models of application performance. This paper describes the vided powerful architecture development and analysis capa-
SALE approach, in the command and control domain, bilities. However, it was not general purpose, did not support

graphical top level design and provided only a small percent-
age of the environment support possible. With SALE's ex-

iR.1gg1.1.U panded graphical design support, tool integration, and au-

TRW has demonstrated impressive productivity and qual- tomation, architecture baselines of excellent quality are now

ity advances in the C3 systems domain through the use of a achievable in manweeks depending on the size and complexity

common layered architecture approa, h, a supporting suite of of the architecture.

reusable Ada components called Network Architecture Figure 1 describes the architecture approach used by

Services (NAS), and automatic source code generation tools CCPDS-R. While this approach has been extremely effective,

which instantiate NAS objects. Using NAS and its support it could be improved substantially by:

software, the Command Center Processing and Display 1. eliminating manual tasks
System - Replacement (CCPDS-R) project achieved approxi-
mately a twofold increase in productivity, reliability and flex- 2. providing on-line support for graphical design
ibility compared to conventional C 3 system development ex-
perience. One of the primary contributors to higher productiv- 3. automating documentation
ity was a decrease in the volume of latent software errors
inherent in initial test configurations and a reduction in the 4. automating smart stub generation so that the architecture
average resolution time for each error. CCPDS-R Software provides a continually improving performance evaluation
Problem Report metricsi indicate that less than 10% of the testacd
development effort was spent doing rework, and less than
15% of the configuration baselines were reworked during 5. eliminating error prone human translations and commu-
development with an average problem resolution time of 15.7 nication
manhours for analysis, implementation and retest. While con-
ventional experience indicates that changes get more expensive 6. providing on-line feedback on architecture implications
with time, CCPDS-R demonstrated that the cost per change
with a NAS architecture improved with time. This is consis- SALE represents a tangible example of improving the UNAS
tent with the goals of an evolutionary development approach 2 architectural process in the spirit of Total Quality Management
and the promises of a good layered architecture 3 where the (TQM). Perhaps one of the most important improvements is
early investment in the foundation components and high risk the elimination of a separate simulation activity for analyzing
components pays off in the remainder of the lifecycle with in- software/hardware performance. Traditional discrete event
creased ease of change. simulations for large distributed systems can be difficult to

9th Annual National Conference on Ada Technology 1991 174

Dm,, Improve
Aritecture Design

Docuentation

o,.lll,. .! .. i s.

mP.te Generate
A. ..acts.. Architecture SAS

Grapkhially Source Code

n.ieer . .u... ...

............. i i I I i................... . .. r .,to
tAnaze m ompar

AigSArchitectura e s

Legenl

Runtn SatsIn roaste Task
Psfeoeor ance Wih Simulation SlAS a eroncme ed al

Str....ra and exe ..tiv behavior .. ong with ot..er expluman Translation

Improve-- I.--Model
Figure 1: NAS Architectural Process

develop, excessive resource consumers, and typically weak at represents the forum for interface evolution between compo-
accurately modeling distributed, non-deterministic functions nents. In essence, a SAS provides only software potential
such as multiprocessing operating systems, multi-tasking Ada energy; a framework to execute and a definition of the stimu-
runtime libraries aid other important components of real-time lus/response communications network. Software work is only
software performance. With SALE and UNAS, performance performed when stimuli are provided along with applications
analysts need only model true application components. components which transform stimuli into responses. If an
Structral and executive behavior, along with many other explicit subset of stimuli and applications components are
computer science oriented functions (e.g., intertask communi- provided, a system thread can be made visible. The incremen-
cation, Ada runtime overhead, fault isolation, etc.) can now be tal selection of stimuli and applications components constitutes
iyeasured rather than simulated or modeled. Tis not only re- the basis of the build a little, test a little approach of the Ada
lieves the modeler of concerning himself with complex, eso- Process Model 2 . It is important to construct a candidate SAS
seic compon nts, but also increases the fidelity of his results. early, evolve it into a stable baseline, and continue to enhance,

augment, and maintain the SAS as the remaining design
Co n behai n ag bae TRWs architectural ap- evolves.

proach, called message based design, has evolved over the last A SAS is not intended to be static. Early stability is un-
five years from research into successful practice in diverse C3 likely since the information content in the SAS components is
applications3.'. Message based design is a method for con- likely to evolve with use. To this end, it is important to con-
stucting a distributed software solution using a predefined set struct an early SAS which provides a vehicle for interface
of architectulral objects with well defined operations and func- solidification, and the flexibility to adapt the SAS components
tional behavior. In message based software architectures, the to accommodate rapid assimilation of design interfaces, It is
top level components are tasks which use message passing as these SAS qualities which have driven the development and
the primary means of data and control flow. NAS provided evolution of the UNAS and SALE products.
this predefined set of reusable Ada objects and operations for
VAX/VMS based platforms. UNAS provides target indepen- UNAS Overview
dent reusable Ada objects and operations in support of this
message based design paradigm. NAS was originally developed from 1984-1987 with the

requirement for reusability (a substantial design driver) across
,oftw= Architecture Skeleton he concept of a software arbitrary VAX/VMS networks. It was enhanced on CCPDS-R

architecture skeleton (SAS) is fundamental to message based with added reliability and performance into a product baseline
design and the incremental development approach prescribed which was reused successfully on multiple VAX/VMS based
by TRW's Ada Process Model 2 . Although different applica- command and control applications.
tion domains may define the SAS differently, it should en- An important objective of developing UNAS was to main-
compass the declarative view of the solution which identifies tain the simplicity of the architectural objects and relationships
all top level ewecutable components (Ada Main Programs and which need to be understood by the software architect. Figure
Tasks), all control interfaces between these components, and 2 identifies an abstract view of these objects. An important
all type dfluitions for data interfaces between these compo- aspect of the NAS approach was that there were less than 10
uens. Although a SAS should compile, it will not necessarily types of fundamental objects. These objects can be molded
execute without software which provides data stimuli and re- into various forms through a powerful set of tailorable at-
sponses. The purpose of the SAS is to provide the struc- tributes.
m'ar/interface baseline environment for integrating evolving UNAS provides components which meet common re-
omponems into demonstrations. The definition of the SAS quirements inherent in all C3 Systems. By reusing these com-

175 9th Annual National Conference on Ada Technology 1991

ITNAS Components
Universal Design Interface

Proess"c Tasks circuits - --- - - - - - - - - - - - - - - - -

E-A ---- -------------------
0 0 0

'rimes So-kets

Targrt DependentImplementations

Ti..NAg Arheinrg, y

Figure 2: Universal NAS Components

ponents, complex development tasks can be avoided. performance characteristics constitute the knowledge base)
Furthermore, overall system reliability is enhanced through the environment for architecture design. Similar to the UNAS
use of proven solutions to the reliability critical functions, software chipset hardware analogy, SALE will provide a
UNAS provides added product quality and development pro- CAD/CAM environment for UNAS application network de-
ductivity due to the overall uniformity with which the system sign.
is constructed and developed. The "reuse" of design tech- Figure 3 illustrates the integrated set of reusable UNAS
niques, test techniques, support tools and instrumentation is a components and supporting architecture development tools that
substantial benefit whose magnitude is proportional to the size are collectively integrated into the Software Architect's
of the application at hand. Lifecycle Environment (SALE).

With UNAS, an architect is provided a complete "software The SALE capabilities cover the software lifecycle includ-
chipset" for creating logical software architectures. These ing:
chips are flexible enough to be "brass-boarded" early in a pro-
ject's lifecycle to achieve tangible feedback on both structural
integrity (software design) and operational performance
(software implementation). 1. A predefined set of network object abstractions (UNAS)

The primary goal in the development of UNAS was min- for constructing arbitrary Ada task networks. These ob-
imizing the target dependencies associated with varying im- jects have well defined behavior and multiple parameters
plementations of Ada and the interfaces to the target operating for tuning to application specific needs. This software
system services which UNAS must implement to achieve dis- chipset provides for a uniform network construction
tributed Ada capabilities. While the Ada language goes a long which is understandable to laymen and expert.
way towards enforcing standard compiler implementations,
there are many instances where a vendor is free to define cus- 2. Automated source code production for multitask network
tom implementations. NAS was constructed specifically using executives to support rapid prototyping. This capability
VAX Ada for a high performance application executing on produces the Ada source code for a network represented
VAX/VMS targets. Consequently, many DEC implementation in the architecture database, and compiles and installs the
dependencies crept into the NAS design. Some of these de- network for runtime evaluation. This permits the impor-
pendencies were incorporated because of convenience, but tant applications requirements issues to be tangible early
more frequently, the DEC specific implementation outper- in the lifecycle where solutions can be formulated effi-
formed a more portable solution. The major challenge tackled ciently.
by UNAS was to repackage (and redesign where necessary)
the NAS components to provide the most portable product 3. Automatic Task stub production for "tbd" or incomplete
while maintaining as much of the function, performance and components with modeled resource loading. This ca-
proven design solutions as possible. Another papers describes pability obviates the need for separate simulations of
the UNAS development and retargetting experience, mission performance for architecture evaluation. With

SALE, the architecture evolves from an abstract model
SALE Descri[t i n into a fully functional implementation. The computer

science issues (e.g., runtime context switching) which
SALE provides a Computer Aided Software Engineering are typically hard to model are visible early in prototyp-

(CASE) environment to specifically support the software ing results. The "abstractions" in the early architecture
architect's lifecycle needs. UNAS permits the source code for models are confined to application specific unknowns
a software architecture skeleton to be produced automatically and continually updated in an integrated performance
since it can be represented in a hierarchical data structure and testbed.
the source code representation is simply a cookbook transla-
tion of object names and attributes into predefined Ada pro- 4. An integrated graphical editor for designing, browsing,
gram templates and generics. The key objective of SALE is to documenting and specifying the network topography,
provide a knowledge based (where UNAS design rules and and defining documenting or reviewing object attributes.

9th Annual National Conference on Ada Technology 1991 176

Applications
Logical

Software
Architecture

Ad&
Source

SALE
•0 Configuration Control

•Source Code Production Dein Appiain
•Document Generation De

o Target Management Load Models

UNAS Components

1 ; 9 Doc NJ

U N A C o p ne t -...... ...
UNAS QD

Catalog d ---- _ ---
T Ev olutionary

S 00 Executable Product

Figure 3: Software Architect's Lifecycle Environment

pability will be extended to support heterogeneous networks in
5. An integrated relational DBMS for accessing, maintain- the future.

ing, evaluating and reporting on the network characteris- Current SALE Capabilities During early 1990, an opera-
tics. tional SALE was achieved. This effort was accomplished by

6. Architecture Documentation production successfully completing three challenging development tasks:

1. Developing a UNAS graphical object editor. This re-
With the above capabilities, the architectural process of quired the design of the structure of the architecture

Figure 1 can be substantially improved. Figure 4 identifies the database and the architect interfaces. The structure of
further automation, elimination of error prone human commu- the database had to provide relations for the storage of
nications, and elimination of separate modeling domains which data and guarantee data consistency at all times. The
can be achieved. Although the figure primarily implies pro- combination of minimalist set theory and powerful as-
ductivity improvement, SALE will also result in substantial sertion and deletion rules provided by VSF, allowed the
gains in architectural quality. Much of this improvement is at- design of such a database. When an object is entered
tributable to added flexibility, reduced rework, and ease of (asserted) into the database: it is checked to ensure it
change as well as the elimination of error sources. When an has the proper structure; relationships are created to es-
architecture is easy to change, a project is more likely to tablish default attributes; and more relationships are
change it more frequently to improve quality, created to link the object to the rest of the architecture.

SALE Foundation The primary capabilities of SALE are Rules have also been established to ensure that when an
layered on top of Systematica Ltd.'s Virtual Software Factory object is deleted, nothing is left dangling in the
(VSF). In 1990 VSF was evaluated and selected as the basis database. The resulting database structure provides for
for building SALE in lieu of developing the capabilities from storage of all objects and attributes required to instanti-
scratch. In essence, VSF provides a CASE tool for building ate a UNAS network, while maintaining a consistent
CASE tools. Creating SALE with VSF amounted to instantiat- representation of the architecture.
ing the "UNAS architectural method" and integrating the sup-
porting source code production tools. VSF provides graphical The interfaces allow the architect to display, enter and
object manipulation and an integrated DBMS for maintaining modify the structure of the network and the attributes of
design information. These foundation tools were tailored the network objects. These interfaces take the form of
(programmed) to support our UNAS architecture techniques. windows in the workstation's native windowing system
We installed a UNAS knowledge base into SALE so that (e.g., Sunview of DecWindows). The interface defini-
architects can efficiently and correctly populate an architecture tion contains the structure of the window as well as the
database. This architecture database is then used as an input to restrictions for entering data. A different interface was
other tools which automatically produce executable models of defined for each category of data the architect will enter.
application programs and a complete executable software ar- When the architect invokes a particular interface, the
chitecture skeleton. By integrating these capabilities with window is constructed using the interface definition and
UNAS reusable software components and the R1000 configu- the current contents of the database. The contents of
ration management system, a complete SALE for homoge- each window can be captured to a file for inclusion in
neous networks was developed. This initial operational ca- architecture documentation.

177 9th Annual National Conference on Ada Technology 1991

Eliminates Error Prone Tasks, Automates Human Tasks, Reduces Rework

D.. Jn1Improve

As.Jme * Proposal Demonstrations* Design Review Demonstrations

Architecture ~ i Jrssn.ntatioa S Baseline Architectures

17

" ru
Le en

: : A...fe. * Mecnized Process P IropoalD -Tki
:Cmk, : *• Corsiguration Control

Lugermenaso: * aeln ArchitecturesPosbeSm asua

Archite e Smaler.Architecture oTems Required 0

Figure 4: UNAS Architectual Process with SALE

SALE divides interfaces into two types, graphic and The stubs can read inter-task messages and condition-
textual. The graphic interfaces are primarily used to ally expend CPU resources, and write inter-task mes-
represent relationships between network objects. sages. This on-line entry of performance estimates
Graphical interfaces capture both the logical and graphi- populates an internal database. The architect enters the
cal relationships entered by the architect. SALE pro- same level of detail as would be used to populate a dis-
vides graphical interfaces for entering all network rela- crete event simulation. This data is then captured in a
tionships. In fact, an architect can generate all data file and input to a non-VSF tool. That tool processes
required for an operational network using only graphical the file and constructs Ada code which will emulate the
interfaces. application task. This code is completely compatible

with the rest of the architecture. After it is compiled and
Textual interfaces are structured in a sequential manner. the appropriate processes linked, the network can be run
Their structure includes: fields (used to display, modify to monitor the performance. The combination of
and enter data); fixed text; and hidden document control UNAS' ability to measure performance and the perfor-
characters (used to embed keywords and format con- mance emulation capabilities of these smart stubs pro-
trol). In addition, structure segments have been nested vides an excellent mechanism for performance analysis.
to allow the structure to be repeated for each database
object of a certain type. Textual interfaces provide the Conventional simulations require a separate effort to
following capabilities: automatic generation of architec- track the software design and construct a standalone
sure documentation; interactive network object attribute simulation to collect performance data. T,--se efforts
modification; automatic Ada source code generation; and are constantly trying to keep up with the changing soft-
interface file generation for use by non-VSF tools. ware baseline and often fall months behind. In addi-

tion, the accuracy of modeled results is often ques-
The combination of the underlying database and the tioned, both by the customer and the software develop-
graphical and textual interfaces provide the architect the ers. Our approach eliminates these problems by using
ability to rapidly define an arbitrary network, modify the the actual software baseline and measuring its perfor-
network object default attributes, and generate the mance. The only variable is the accuracy of the
source Ada code for the network. This code can then be estimates used in the smart stubs (which come from the
processed (compiled and linked) to generate an exe- software developers). The accuracy of the measure-
cutable network. Running the network demonstrates ments increase as the stubs are replaced with the real
the feasibility of the architecture and UNAS instrumen- tasks as they are developed. Thus the same system can
tation provides for measurement of the system perfor- be used to obtain performance data from start to finish
mance. The architect can then use SALE to rapidly without the need to expend additional resources.
modify the architecture to incorporate design modifica-
tions and change attributes to enhance performance. 3. Programming the UNAS knowledge base into the
The Ada code generated includes dumb stubs for the database. In addition to storing data and maintaining ar-
application specific processing. As the real applications chitecture consistency, the database has been pro-
ar developed, they replace these stubs and the system grammed with rules which enforce compliance with
evolves into the final configuration. UNAS. These rules ensure that all data contained in the

database will result in a properly instantiated UNAS
2. Developing a generic application performance model, network. They are used to enforce semantic constraints

An important capability of SALE is its ability to generate between object attributes. The big advantage here is that
smart stubs in place of the dumb stubs automatically correctness is evaluated as the data is entered, giving
created as part of the network structure. Each smart immediate feedback to the architect. Thus the database
stub emulates the performance of an application task. always contains a correct design. This is very important

9th Annual National Conference on Ada Technology 1991 178

for UNAS since it has been purposely constructed to network. This opens the door to the use of Al tools to
postpone many semantic checks until runtime. This aid in the architecture design.
povides a great deal of added flexibility to UNAS but
also inaruses the penalty of semantic errors. If a se-
mantic ror were in the code and not discovered until
runtime, a great deal of time would be lost in identifying To quantify the benefits of SALE, Table I identifies the
and correcting the error and then re-compiling and link- metrics collected for two different architecture efforts. The
ing the system. SALE's knowledge base removes the UNAS Benchmark is the architecture used to evaluate relative
possibility of these semantic errors from occurring in UNAS performance. Forward Area Air Defense (FAAD) is a
the first place. Errors are caught and rejected as the ar- real-time battlefield system. These initial SALE applications
chitcat a them. demonstrated the ability to rapidly evolve an architectural con-

cept into a tangibly measurable format in a matter of days. The
Future SALE Enhancements While SALE is currently interactive capabilities and error free implementations permit an

fully functional, there exist a great number of additional ca- architect to concern himself with the important design tradeoffs
pabilities which could be provided. These enhancements pri- while relieving the architect from syntactical and semantic im-
marly represent advances in the amount of automation of the plementation details. Speculation on runtime performance is
system architect's tasks and improvements in the ease of use replaced by measurement thereby accelerating target runtime
of SALE. The following items reflect the general future direc- implementation issues into the design process.
tion of SALE.

UNAS
Simplify data movement. VSF provides a Conserve and Benchmark FAAD
Merge function for moving data from one database to Metric Value Value
another. However this capability requires several actions No. of Processes 11 9
to be accomplished in a particular order. Failure to fol- No. of Tasks 18 8
low the procedure exactly could result in corruption of No. of Sockets 72 33
the target database. It would be possible to simplify this
process to the point where all required data would be SLOC Produced 6250
captured with a single action and inserted with a similar Engineering Tune 16 hrs 8 hrs
ci _Implementation Time 8 hrs 4 hrs

Add interfaces. The current set of interfaces is sufficient
for constructing a network. Additional interfaces can be Table 1: SALE Metrics
added to provide more information to the architect and to
produce documentation with different views of the archi- When large, distributed real-time systems can be proto-
tecnue, typed rapidly and continuously evolved efficiently, substantial

development risk can be avoided. Also, since the software ar-
Incorporate modifications for heterogeneous networks. chitecture components encapsulate the majorit , of the top level
The current version of UNAS supports homogeneous interfaces, a stable integration framework can be baselined
networks. Additions to UNAS to support heterogeneous early in a project's lifecycle. This relieves developw,-nt risk
networks will require additional information in SALE. by providing a controlled and unambiguous mechanism for

evolving interpersonal communications. The result is a prod-
Enhance UNAS knowledge base. SALE currently has a uct which maximizes team productivity by eliminating global
great deal of UNAS knowledge built into both its se- design issues as early as possible while permitting continuous
mantic checks and its help messages. As the product improvement without fear of significant breakage.
matures this knowledge can be enhanced and broadened
to further aid the construction of UNAS architectures.

Provide a copy capability. VSF does not directly sup- David Brown is the product coordinator for the
port copying objects. Since this is something which Universal Ada Products for Heterogeneous Distributed
could greatly improve the architect's productivity, we Systems Independent Research and Development (IR&D)
will look at providing an external interface to accomplish Project. He is currently responsible for the development and
this function. integration of the SALE tool set. Prior to this assignment he

was the Subproject Manager for Software Engineering on the
" Automate generation of auxiliary files. Executing a CCPDS-R Project from 1987-1990. Previous assignments

UNAS network requires the existence of several auxil- included roles of increasing responsibility on the Peacekeeper
iry files. Automating the generation of default versions and B-2 programs. He received his BS with majors in
of these friles would reduce the effort required to setup Mathematics and Computer Science from Northern Kentucky
the system. University in 1980. Mr. Brown has been at TRW for 10 years

pursuing the advancement and automation of Software
" Include non-UNAS objects. Every system will contain Engineering techniques.

objects such as hardware devices which are not related to Walker Royce is the principal investigator for the
UNAS. For documentation purposes, the ability to in- Universal Ada Products for Heterogeneous Distributed
clude these objects will be incorporated. Systems IR&D Project. Prior to this assignment he was the

Software Chief Engineering responsible for the software de-
SProvide interfaces to Artificial Intelligence (Al) tools. velopment process, the Network Architecture Services soft-

The information contained in SALE is all that is required ware and the overall software engineering on the CCPDS-R
toqreesent the architecture. When this data is combined Project from 1987-1990. From 1984-1987, he was the
with performance data collected from the running net- Principal investigator of the Software Engineering and
work, it can be evaluated to optimize performance of the Development Division's Ada Applicability for C3 Systems

179 9th Annual National Conference on Ada Technology 1991

IR&D rojec This IR&D project resulted in the foundatons [2] Royce, W.E., "TRW's Ada Process Model For
for Ada COCOMO (d code cost estimation model), the Ada Incremental Development of Large Software Systems",
Process Model and the Network Architecture Services soft- Proceedings of the 12th International Conference on
ware, technologies which earned TRWs Chairman's Award Software Engineering, Nice France, March 1990.
for Innovaltion and have since been transitioned from research
into practice on real projects. He received his BA in Physics at [3] Royce, W.E., "Reliable, Reusable Ada Components for
the University of California, Berkeley in 1977, MS in Constructing Large, Distributed MuldTask Networks:
Computer Information and Control Engineering at the Network Architecture Services (NAS)", TRI-Ada
University of Michigan in 1978, and has 3 further years of Proceedings, Pittsburgh, October 1989.
post-graduate study in Computer Science at UCLA. Mr.

oyce has been at TRW for 12 years, dedicating the last six [4] Grauling, C.R., "Network Architecture Services: An
years to advancing Ada technologies for large real time dis- Environment for Constructing Command, Control and
tributed applications. Communications Systems, Second IEEE Workshop on

Future Trends of Distributed Computing Systems
References Proceedings, Egypt, October 1990.

[1] Royce, W.E., "Pragmatic Quality Metrics fo. [5] Royce, W.E., Blankenship, W.P., Willis, B.P., Rusis,
Evolutionary Development Models", TRI-Ada E.A., "Universal Network Architecture Services: A
Proceedings, Baltimore, December 1990. Portability Case Study", Submitted to Ada IX, 1991.

9th Annual National Conference on Ada Technology 1991 180

Universal Network Architecture Services:
A Portability Case Study

W. Royce, P. Blankenship, E. Rusis, and B. Willis
TRW Space and Defense Sector

One Space Park
Redondo Beach, CA 90278

Abstract lel, other IRAD projects tackled the problems associated with
heterogeneous networks and porting message based design

TRW has demonstrated twofold productivity and quality products to Unix platforms. In 1990 the Universal Ada
gains in the Command, Control and Communication (C3) sys- Products for Heterogeneous C3 Systems IRAD merged these
tems domain through the use of a common layered architecture lessons learned into a universal approach for message based
approach and a supporting suite of reusable Ada components, architectures.
tools and instrumentation called Network Architecture Services The NAS architecture approach was key to the CCPDS-R
(NAS). TRW has reused NAS on several C3 software appli- success where productivity was double the typical productivity
cations, most notably the Command Center Processing and for TRW C3 software developments. Along with this advan-
Display System - Replacement (CCPDS-R) program. tage (and in fact, one of the primary contributors to higher
CCPDS-R has successfully employed NAS to develop the productivity), was a corresponding decrease in the volume of
Common subsystem (350,000 source lines, 10 VAX Nodes, latent software errors inherent in initial test configurations and
75 VMS Processes, and 300 Ada Tasks interconnected with a reduction in the average resolution time for each error.
1200 task to task interfaces) on budget and on schedule. CCPDS-R Software Problem Report metricsi indicate that less

One limitation of NAS however, is that it is dependent on than 15% of the configuration baseline was reworked during
VAX/VMS unique operating system services thereby confin- development with an average SPR resolution time of 2 man
ing NAS usage to VAX/VMS based target applications. We days for analysis, resolution and retest. While conventional
have recently expanded the NAS suite through repackaging its experience is that changes get more expensive with time,
components into a universal Ada product, Universal NAS CCPDS-R demonstrated that the cost per change improved
(UNAS), with invariant interfaces (user visible specifications) with time. This is consistent with the goals of an evolutionary
and a minimally variant set of target dependent bodies. The development approach2 and a good layered architecture 3 where
universal parts were engineered on the Rational R1000 to en- the early investment in the foundation components and high
hance the "pure Ada" integrity of the invariant components risk components pays off in the remainder of the life cycle
thereby ensuring maximal portability. The target dependent with increased ease of change.
parts (approximately 500 source lines) were implemented on The current limitation of NAS is that it only executes on
various diverse platforms to demonstrate the functional homogeneous VAX/VMS networks. In order to exploit the
portability and performance difference between retargeted proven advantages of using NAS techniques, we needed to
UNAS implementations. expand its domain of use into other target environments. This

VMS dependency is eliminated by the Universal Network
Index Terms: Distributed Realtime Architectures, Reusable Architecture Services (UNAS) product which provides a sin-

Ada Software, Portability, Fault Tolerant Software. gle, portable set of interfaces and executes on multiple homo-
geneous target platforms (CPU, Operating System, Compiler).

Backgroundg Ultimately UNAS will be expanded to support a distributed,
heterogeneous network so that applications programs can in-

NAS/UNAS Genesis. Most C3 systems have a common teroperate without knowledge of each other's network resi-
core set of requirements (Figure 1) for software executive dence or platform.
functions such as initialization, system mode control, recon-
figuration, fault detection, health and status monitoring, and The UNAS Annroach
interprocess communications. The core components which are
constructed to satisfy these common requirements could be An important objective of developing UNAS was to main-
reusable between different applications if they were carefully tain the simplicity of the architectural objects and relationships
designed and implemented with sufficient power and flexibil- which need to be understood by the software architect. Figure
itv. The Network Architecture Services (NAS) product was 2 identifies an abstract view of this simplicity. An important
developed to provide a common set of distributed executive aspect of the NAS approach was that there were less than 10
functions for VAX/VMS architectures. types of fundamental objects. These objects can be molded

From 1984 through 1987, "TRW's Ada Applicability for into various forms through a powerful set of tailorable at-
C3 Systems" Independent Research and Development (IRAD) tributes.
project pioneered the use of Ada and message based design The primary goal in the development of UNAS is minimiz-
techniques for productive development of large Command and ing the target dependencies associated with varying implemen-
Control Systems. The NAS products were put into practice on tations of Ada and the interfaces to the target operating system
the Command Center Processing and Display System- services which UNAS must implement to achieve distributed
Replacement (CCPDS-R) project with great success. In paral- Ada capabilities. While the Ada language goes a long way to-

181 9th Annual National Conference on Ada Technology 1991

Interprm0eas Communiction Feult Isolation
Common Distributed great zoull Fault Recovery

(20-0O) Executive PerforenaCe Monitoril Reonflgstion
Functions In lltlalotilon status Monitorilg

Applicatlons System Services snd Date Monagezuent

Unliue Test @ lgrih(50%.NSO%) Exerdse CoAtloith Dtspe

Figure 1: C3 Software Architectures

wards enfoiving standard compiler implementations, there are plementation and thereby provides complete portability of
many instances where a vendor is free to define custom im- UNAS and UNAS based applications. The second effort in-
plementations. NAS was constructed specifically using VAX volved the development of pure Ada solutions to a few NAS
Ada for a high performance application executing on VMS tar- functions which were dependent on VAX/VMS specific fea-
gets. Consequently, many DEC implementation dependencies tures. In particular, NAS was reliant on VMS logical name
crept into the NAS design. Some of these dependencies were capabilities and a DEC layered product called Screen
incorporated because of convenience, but more frequently, the Management Guidelines (SMG). These two functions had to
DEC specific implementation outperformed a more portable be eliminated in favor of equivalent Ada solutions which
solution. The major challenge tackled by UNAS was to would be portable between platforms.
repackage (and redesign where necessary) NAS components To support these two capabilities the UNAS product in-
to provide the most portable product while maintaining as cludes two new portable Ada components. The DEC SMG
much of the function, performance and proven design solu- interfaces were replaced with portable Ada components which
tions as possible. provide the necessary screen/keyboard drivers to allow execu-

The approach for this task is simple conceptually, but very tion on any ANSI standard terminal device. This removed the
difficult to implement in practice. At the top level, UNAS NAS dependence on executing on DEC VT220 compatible
simply needed to be packaged into an invariant part and a tar- devices. The logical name translation capability which can
get dependent part. The invariant part should include the vary wide on different operating systems was provided by
complete user visible specifications (to permit applications developing a portable package called NUT_Alias. This pack-
portability) and the majority of UNAS components. The target age provides the necessary logical name capabilities using only
dependent part should be confined to a single package body of portable Ada input/output mechanisms.
generic platform dependent functions which are needed by
UNAS but not supported directly by the Ada language. Figure UNAS Exoerience
3 identifies the content of the target dependent package body
required by UNAS. The metrics of the UNAS redesign are provided in Table

Portability features of Ada are easily one of the most eso- 1. It is interesting to note that UNAS is approximately 5000
teric aspects of the language and the quality with which leading SLOC less than NAS (18 KSLOC). This resulted from two
Ada compiler vendors support these features vary widely, phenomena. First, UNAS design incorporated many lessons
Furthermore, some functions which could easily be imple- learned in the design and maintenance of NAS over the last 4
mented in portable Ada may have potentially serious perfor- years. This resulted in simpler, more efficient solutions to
mance consequences and must also be put in the implementa- many of the internal implementations. Secondly, with these
tion dependent part to take advantage of higher performance new implementations, substantially more internal reuse within
solutions. For example, data movement could easily be im- UNAS itself was implemented also contributing to the reduc-
plemented using the standard Ada generic function tion in size. The complete redesign effort required approxi-
UncheckedConversion. However, the performance of this mately 20 man months spread across an 8 month schedule.
function varies greatly between implementations. In addition,
use of this function may be restricted or not even supported in
some target environments. By including the means to move
data in the implementation dependent part, a portable
Unchecked.Conversion instantiation could be used or alter- CSC NAS UNAS
nately, an efficient, unrestricted operating system service (such Generic Applications Control I2= 1000
as block move by address) could be used. These kinds of Error/Performance Monitoring 3100 1300
tradeoffs are not obvious without tremendous breadth of Ada Interactive Network Management 4200 3200
experience across multiple vendors as well as substantial ex- InterTask Communications 6100 3700
perience in the tradeoffs of various NAS/UNAS implementa- Utilities 1300 1800
tions and their performance sensitivity. User System Interface 3000 2500

The UNAS redesign of NAS was implemented with two ITCSstem-Interface N/A 500
technical efforts. First was the repackaging of NAS to isolate TOTAL 870 14
the platform dependent functions into a single package
ITCSystemInterface. This package specification provides a
generic set of invariant operating system services required by Table 1: UNAS Source Code Metrics
UNAS to implement functions which are outside the scope of
the Ada language. The package body then provides target de- Each of the retarget activities was evaluated by executing a
pendent implementations. This separation insulates the re- portable applications benchmark. This benchmark configures
mainder of UNAS from being coupled to the underlying im- 16 UNAS objects for evaluating various perspectives of

9th Annual National Conference on Ada Technology 1991 182

UNAS Components
Universal Design Interface

Proess" Tasks Circuits --........ Ta'k.
-
--..- - -

FEEI1 ---------------------
E~J Node.

Applicatios

Masses.- T T ee
00

Tmers Sockets

Target Dependent
inplementations

I I ITNlg Aere thitptrly

Figure 2: Universal NAS Components

UNAS performance. Three different physical implementations their NAS experience, but only one team member could
of the benchmark permit the UNAS message passing to be really be deemed a UNIX expert.
analyzed at all three levels of intertask communication: within R f0 UNAS. The Rational R1000 is dedicated to the
a single process (intertask), between two processes on the development and maintenance of Ada software, as well as the
same node (interprocess), and between two processes on dif- configuration management thereof. Being a pure Ada platform
ferent nodes (internode). Given the various differences in the (the entire environment is Ada based, including operating sys-
underlying platforms (processor speed, instruction set archi- tem commands implemented as Ada procedure calls), the
tecture, compiler version, etc.), we will not quote the specific R1000 is idea]4 for developing system independent Ada pro-
results in this paper. It is important to note however, that there grams. In addition, usage of target dependencies is strictly
were substantial differences in both compilation performance controlled, making it ideal for cross-development. It is for
and execution performance as well as the number of underly- these reasons that the UNAS development team performs all
ing compiler/runtime bugs uncovered. Since some of the software development, maintenance, and configuration man-
vendor's compiler platforms are still under non-disclosure agement on the R 1000. The differing implementations of
agreements, these specifics will not be discussed. Some UNAS (i.e., target dependencies) are built and semantically
general differences are noteworthy. Compilation times for the validated on the R 1000, then downloaded to and executed on
UNAS benchmark (a very Ada generic intensive set of library the respective target.
units) ranged from 30 minutes to 8 hours. Execution times While cross-development is one of Rational's strengths,
were more similar, all platforms performing within 50% of they also provide a good environment for testing Ada soft-
one another when normalized on a rough "per MIP" basis, ware. Unfortunately, the R1000 does not support any lan-
Finally, some platforms handled UNAS and its benchmark guage other than Ada, although files containing "foreign"
with no compilation or runtime errors, some required only source code (such as C) can be maintained and managed (but
minor workarounds, and others required sacrificing some of not executed) on the R1000. In addition, it does not support
UNAS' portability features (which exploited advanced Ada device drives other than those required for a user's terminal.
structures) for less stressful solutions which would be less The RI000 is not intended to be a target environment, but a
taxing on the compiler/runtimes but increase the complexity of host environment for arbitrary targets. It does however, need
porting - a standard tradeoff. to be able to execute UNAS networks to be a credible lifecycle

The metrics which are quotable for each retarget (Table 2) host and support functional testing. The RI000 is therefore,
include the following: also a UNAS target.

In order to support testing of UNAS based applications
Development Effort Identifies the number of man months and exploit the R1000's advanced functional debugging ca-

required to develop the target dependent part of pabilities, the target dependent portion of UNAS was modified
ITCSysemInterface. accordingly for the R1000. It was the first target chosen due

to the R1000's management of implementation dependencies,
ITC System Interface SLOC Identifies the total source resulting in early solidification of this critical aspect of UNAS.

Elnes of c0de (SLOC) required to implement the target de- The end result was better than 95% portability of UNAS (less
pendent part of ITCSystemInterface. than 5% is target dependent). The R1000 environment cou-

pled with broad application and disciplined use of the Ada lan-
Implementalion Order This number identifies the order in guage allowed this transportability ratio to be achieved. Since

which the retargets were done. The later the order, the the majority of UNAS including the user interface is totally
more experience the team has in implementing the target portable, UNAS applications are also portable. Thus, devel-
dependent part. Comparing these numbers for platform opers may use the R1000 environment for development and
productivity is inappropriate since there are many testing, and then download and execute their code on the ap-
(intentionally) undefined factors. For example, the team propriate target without making any source code
is extremely competent in VMS system services given modifications.

183 9th Annual National Conference on Ada Technology 1991

Com, ponunt "7

tPacktmg.-terfeepe
DyteConvnom Generic P Component

Conver tTo-ytes Procedure Pr-coslo Package

Convert-.ToObject Procedure Close Procedure
Deallocecyte.Arry Procedure CloeeAll Procedure
t!eaocstn.Ste.m P e pckage Fellure.Reason Functlon

Gael.CPuncetion Gencrote .am.e Function
Get .CPtNJd Function ts.open Fuacion

-hatwlCtive Function Name.Of Fenction

Kilnnet Procedure Notficstien Generic Pae

Lenthln.Optes Function Create Procedure

Move-y.-Addres Procedure Notner reek

ProcesCoutrel Package Open Procedure

Create Procedure OwnowwR-uines Pocedare
Delete Procedure Resend.Overilowing-Mes Procedure
pa .eanj o Function Write Procedure
nrodjuput.armetml Procedure WFuetn

-diased.AceeN Generic Package Wrie Procedure
Execute.Critical.Section Procedure Write Procedure

Semaphore Task

Figure 3: UNAS System Dependent Functions

Once UNAS was completed for the RI000, the UNAS bindings to C. Rather it is a comprehensive effort to facilitate
team had an initial baseline from which additional ports could the use of all POSIX features in a way that is consistent with
be made, and lessons learned incorporated back into the de- the Ada language. For example, the handling of interrupts in
sign. This process will continue as UNAS matures in future Ada can be tied to task entry points in a fairly portable man-
versions. ner.

UNIX UAS. While there was much skepticism concern- Once the Ada interface is finalized, and supported by major
ing the ability of state of the art UNIX platforms to support a Ada vendors, the task of porting programs from one Ada ven-
state of the art realtime Ada product like UNAS, we found dor to another should be much simpler and hence more cost ef-
only minor issues in porting UNAS to HP UX (using Alsys) fective. Such a standard would be quite welcome to the devel-
and to Sun SPARC (using Verdix). In general, these imple- opers of UNAS, as well (we are sure) to other projects that
mentations performed similarly to the VAX and R1000 ver- attempt to program in Ada for UNIX based platforms.
sions with some advantages as well as some disadvantages. HPUX/R1000 CDF. As mentioned previously, the
Overall, the UNAS interface to UNIX platforms is being Rational R1000 environment provides an excellent cross-de-
evolved to remain consistent with existing directions of velopment capability. Although target dependent Ada code
POSIX. may be developed and semantically validated on the R1000, it

The major advantage of porting to UNIX systems is that must be downloaded to the target, and then compiled, linked,
much of the system call interface is consistent from one ver- executed, and debugged using some other vendor's compiler.
sion of UNIX to another. This allowed us to port over 90% To alleviate this cumbersome process, Rational provides a tool
of the implementation dependent pan of UNAS from a SUN to known as a "Cross-Development Facility" (CDF) for some
an HP platform without changes. This is even more remark- specific targets (we specifically used the M68000 version for
able considering that the UNAS software was not only ported HPUX). The CDF not only provides the standard R1000 ca-
from one UNIX system to another, but also ported to a pabilities for target specific software development and configu-
different Ada environment, ration management, but also provides the capability to com-

With respect to Unix targets, the target dependent software pile, link, execute, and debug on the target from the context of
in UNAS that must be changed is primarily due to differences the R 1000 environment. Using the CDF, one need never lo-
in Ada environments, not changes in UNIX systems. gin to the target upon which the program is executing.
Nowhere is this worse than in interrupt (UNIX signal) pro- The CDF fully automates the host-to-target software life-
cessing. Although each vendor we have used does enable cycle. In addition, the CDF utilizes a Rational provided Ada
UNIX signals to be tied to Ada tasks, each interface is differ- run-time, rather than making it the developer's responsibility
ent. Some vendors give full interrupt functionality, while to acquire and learn some other vendor's compiler for use on
others may provide a subset. Still others have changed the in- the target. This assures compatibility between uses of imple-
terrupt processing such that it is unique to their Ada system. mentation specific Ada features and the particular run-time, in

The best way to alleviate this problem is to standardize the that they are both provided by Rational. The CDF also saves
Ada interface to UNIX. This is currently being done in two time and effort in that after compiling on the R I000, the code
steps. The first is adoption of the POSIX interface, which need only be linked and executed from the RI000. The CDF
alone should reduce many of the problems associated with automatically downloads code to the target as needed, trans-
porting programs from one UNIX platform to another. This, parent to the developer. Without the CDF, the code would
however, is just an interface to a UNIX-like operating system, require manually downloading and recompiling on the target
based on the C language. In many instances Ada vendors before linking and executing.
must make decisions on how to support a particular feature From the developer's perspective, the fact that their pro-
(such as signal handling). Naturally, the decisions, and hence gram is running on another machine is almost entirely trans-
the implementations and interfaces, will differ from one yen- parent. All I/O performed by the program is done in the
dor to the next. context of an R1000 window, just as if it were running on the

In response to the wide range of Ada interfaces to UNIX, R1000 and not the target. The CDF makes the R1000 a fully
a section of the IEEE is working on an interface for the Ada functional "Universal Host" for certain target environments,
language to POSIX. The interface definition is not simply Ada with full run-time support for mixed language programming

9th Annual National Conference on Ada Technology 1991 184

VAX Sun HPUX CDF
Criteria R1000 VMS Unix HPUX (R1000)
Development Effort (MM 2 .25 2.5 2 2

ITC.SystemJnterface SLOC 488 570 752 719 690
huplementation Order 1 2 3 4 5

Table 2: UNAS Retarget Implementation Metrics

and hardware interfacing. In addition, developers can use the For example, UNIX named pipes result in message fragmen-
advanced RI000 debugger to debug programs executing on tation when writing messages greater than a certain size.
the target. Conversely, several messages may be received in a single I/O

VMS UNAS vs VMS NAS. VAX Ada provides an ade- operation at the destination. Consequently, the UNAS inter-
quate development system as well as a highly sophisticated nals had to be modified to allow for message "packetization" at
run-time environment. Mixed-language programming, VMS the source, and message "assembly" and boundary determina-
System Services, VMS Run-Time Library Routines, access to tion at the destination. While these modifications were made
VAX Macro machine instructions and other aspects of VMS for UNIX platforms, they also greater generalized the UNAS
are easily accessible and fully supported by VAX Ada. VAX internals to handle arbitrary message sending and receiving
Ada also supports system independent Ada programs, with patterns, as opposed to assuming a "one message written/one
compiler generated source code listings including a portability message read" scenario. Thus, each UNAS platform provides
summary with information on system dependencies present in additional lessons learned that, once incorporated, greater gen-
a progran Thus, a programmer may choose portability and eralize the design.
determine via compiling whether or not their code is truly A single solution that will work in all implementations is
portable. Or, a programmer may choose to take advantage of highly desirable, and while it takes a great deal of effort to
VAX Ada and VMS specifics to write complex device drivers achieve it, portability is possible. However, one must take
and the like. care that the pure solution does not hinder performance signifi-

Having had many years experience with VAX Ada, and cantly. While UNAS is currently operational on the target en-
since VAX/VMS was the original NAS platform, porting vironments discussed above, performance of interprocess
UNAS to VAX/VMS was relatively simple. It took approxi- communications could stand improvement on the UNIX plat-
mately I man-week to modify the system dependent portion of forms. Portability was traded off for performance in order to
UNAS accordingly, and to fully debug and test it. Although simplify the retargeting process, so that UNAS could be op-
the UNAS internals have changed greatly from NAS, familiar- erational on a variety of targets quickly. Rapid retargeting re-
ity with VMS System Services in general and UNAS' design suited in substantial lessons learned early in the design, and
for portability allowed us to quickly release the VMS version also proved that UNAS technology works on arbitrary targets.
of UNAS. Other factors directly influencing the speed of the Having done this, the UNAS internals can now be modified to
port were VAX Ada's excellent run-time support, and the ma- take better advantage of implementation defined features, thus
turity of VAX Ada as a virtually "bugfree" compiler. improving performance, at the expense of portability.

Runtime performance of the portable UNAS was expected Nonetheless, it is anticipated that UNAS will still be 90%
to be slightly worse than the VMS dependent NAS since, in portable after these modifications.
general, portable solutions tend to have more inherent over- Since the UNAS interfaces were solidified long ago,
head. However, UNAS also incorporated many design UNAS applications need only be recompiled against new
lessons learned in its internal structures and operations which versions, and will not require modification. This is another
offset the portability overhead to achieve even higher perfor- Ada advantage: abstraction of UNAS objects for the
mance on VMS than NAS could achieve. Specifically, the ini- application and isolation of the UNAS interfaces into a
tialization time performance (substantially improved) and task standarized package specification. UNAS will continue to
to task message throughput (20% improvements) are at- improve with time, both performance-wise and target support-
tributable to innovative design solutions which incorporated wise, independently of UNAS applicaions.
specific knowledge of Ada runtime performance issues. While porting UNAS to various targets, several lessons

were learned and two distinct classes of portability were ob-
Portability Lessons Learned served:

1. "Internal" Ada portability. Some of the compiler im-
UNAS portability implies much more than just having plementation dependencies were immediately obvious and

UNAS components written in Ada that will compile on any were pointed out by some of the compiler reference manuals.
platform. UNAS provides multiprocess control, networking, Use of implementation defined packages (e.g. System,
interprocess communications, CPU performance monitoring, LowLevel_lo, Interrupt, OsFiles, Starlet, etc.) was avoided
and interfaces to the user defined UNAS program configura- or isolated to UNAS system dependent package bodies. Use
tions. All of these objects are outside the domain of the Ada of implementation defined pragmas or attributes was similarly
language standard. This means that UNAS is not only limited. While unrecognized pragmas should be acceptable
portable with respect to Ada, but also creates Ada compatible (with possible warnings) or ignored by any foreign Ada
abstractions for the isolated operating system, platform, and compiler, care was taken so that a pragma used by several
network protocol interfaces, compilers would not result in different meanings (e.g. pragma

While writing portable Ada software that is, in and of it- Main).
self, heavily system dependent is not easy in Ada, in any other More subtle implementation dependencies (in package
language it would have been even more difficult. Ada lan- Standard) were also avoided. Dependence on implementation
guage standardization and the ability to abstract system depen- defined range constraints of Integer, Duration, etc. was
dent data objects and interfaces made the development process avoided by use of explicit "subtypes" constraining the ranges
manageable. Even so, there were many instances where de- to the minimum required by UNAS.
sign changes were necessary in order to make it more general. Unconstrained or variant objects were not used in inter-

185 9th Annual National Conference on Ada Technology 1991

process commnications of UNAS defined messages, because methods employed by operating systems for blocking pro-
of various implementations and restrictions on use of cesses while waiting for input, whether it uses Text_lo.Get or
Unchecked_Conversion, Address, and Size attributes when operating system calls. Also, function key escape sequence
convating dtse messages to internal byte stream formats. validation and "no echo" characteristics are managed differ-

Use of record or array aggregates and "others" clauses ently by each system. To overcome the variations in function
generally included the explicit type of the object, to avoid key definitions on different terminals, the User System
pushing the compilers "to the edge" into areas subject to inter- Interface is equipped with a keystroke recording and mapping
pretation ofthe Ada language standard. procedure automatically invoked when first installed. This al-

UNAS Ada task specifications were carefully designed to lows the system unique character sequences to be learned and
support implementation dependent task priorities, task stack remembered in a "table look up" fashion, thus making the
size control, and acceptance of system interrupts at rendezvous character sequence validation and look up routines entirely
entry points. Task bodies were designed not to rely on task portable.
scheduling, priority, or pragma Shared for synchronized re- MultiTarget Configuration Management Configuration
source control, or access to minimized shared data objects. management of UNAS source code, under development for

2. "External environment interface portbiliy. In order the multiple targets, was performed on the Rational R1000
to perform operating system dependent inter-process commu- using the Configuration Management and Version Control
nication, UNAS Ada abstractions were created, in an invariant (CMVC) system. This system was chosen because it was the
package specification, for "pipe-like" objects used by UNAS. only configuration management system that met our needs,
These abstract UNAS devices were then implemented in the and for managing Ada software, it provides far more capability
system dependent package body and utilize VMS mailboxes, than any other known CM system. For managing UNAS
UNIX pipes, or shared memory, etc., on each respective sys- configurations, CMVC provides us with the following capa-
ten This allowed for a very loosely coupled implementation, bilities:
and the majority of UNAS code to remain invariant across the 1. Management of Ada units - The CMVC system has a
various targets. head start on all other CM systems, since it deals directly

Remote process creation was similarly implemented. It with Ada units, not with system dependent disk file
was assumed that any operating system process model re- names, to identify a controlled unit of code. This im-
quires Input, Processing, and Output to be specified. An in- mediately relieves the burden of cross-referencing the
variant Ada procedure specification was designed, that same Ada unit on different targets, using different
required three string parameters specifying the standard input, names, and allows the CMVC system to interact directly
standard output, and executable file names. The body of this with the required Ada library environment. Other CM
procedure was then free to make any operating system calls systems are independent of the Ada Program Support
necessary toimplement the function. Environment (APSE), and rely on disk file names.

Along with the need for portability, needs for relocatability
and run-time setup parameters emerged. In order to implement CMVC is based on Rational's "subsystem" concept,
an efficient run-time parameter passing mechanism (to a pro- which enforces logical groupings of Ada packages, re-
cess) in a portable fashion, UNAS Alias Names were devel- stricts visibility to any system-dependent packages, and
oped. UNAS Alias Names are string literals that are assigned reduces the common Ada "withing" wars that result on
string values, which can be accessed at run-time by Ada pro- larger projects, if scope of visibility and "withing" order
cedures (UNAS Alias Names are equivalent in concept to is not controlled.
VMS Logical Names or UNIX Environment Variables).
UNAS Alias Names are implemented using the implementa- 2. Allows multiple compiler models - CMVC allows the
tion-independent Ada standard package Direct Jo. The Ada installation of any other Ada compiler's environment in-
interface to UNAS Alias Names is provided by a UNAS pro- terface packages, thus creating an equivalent compilation
vided package NUTAlias. This package is used extensively environment, in which we can semantically validate and
in UNAS and is accessible by UNAS users. It allows modifi- analyze code for a foreign target system. By using
cation or redirection of UNAS setup parameters, system con- CMVC, all of the UNAS code for the various targets can
figurations, file names, directory names, process names, node reside (in a pre-compiled state) on one machine, where it
names, timeout parameters, etc. without recompiling any Ada can be easily controlled.
programs, and in a similar manner on any platform. These
services allow avoidance of "hard-coding" any explicit file- 3. Executed on development system - CMVC resides on the
names or directory names which are operating system depen- same system we perform all of our development. This
dent. Use of Alias Names is optional for a UNAS user, and way it controls software in development, and climates
does not preclude or obscure visibility to any operating system any machine-to-machine transfer time (to return it to
dependent logical names, aliases, or environment variables, configuration control). Also having an executable ver-
which are often used to implement hierarchical development sion of UNAS for the Rational R1000 allowed much of
testbeds. the unit testing to be performed there, using controlled

The generic Ada UNAS User Interface, used to implement configurations.
the Interactive Network Management operator console dis-
plays, was re-designed to eliminate dependencies on the 4. Unit reservation - CMVC supports reservation of Ada
VAX/VMS Screen Management Guidelines (SMG). A con- units for modification. This greatly reduces the chances
ceptually similar screen driver was developed in Ada based on of losing simultaneous edits to the same unit by different
ANSI escape sequences output by Text-lo.PutLine. This individuals.
has allowed even the device dependent portion of the screen
management procedures to be portable on most of our plat- 5. Multiple version and release control - CMVC allows
forms, with terminals ranging from serial VT100 devices to X- multiple releases of software to coexist on the same sys-
Windows, since they all support ANSI. However, the tern. This way, one developer can make changes and
keyboard input portion of the User Interface requires device test them, concurrently with another developer. Stable
dependent drivers for each system, because of the various versions can be "frozen." The CMVC subsystems also

9th Annual National Conference on Ada Technology 1991 186

allow Ada specification to be modified in one subsystem bility. The complexity of portability ensures at least a two
md not immediately impact dependent units in other sub- pass design effort and necessitates a small cohesive team.
systems. Ignoring these circumstances in future reusable/portable devel-

opment efforts will result in substantial risk of failure.
6. aange tracking and recovery - CMVC internally main- On the positive side, UNAS provides a tremendous layer

tains the differences between all generations of a con- of isolation with which applications components can now be
uolled Ada unit. This allows reconstruction of any pre- implemented in a reusable fashion. The investment in UNAS
vious generation, or examination of line-by-line changes. will not only pay off in near term usage by applications pro-

jects but also in providing leverage to achieve even higher lev-
7. Change propagation into common invariant units - els of reuse in future projects. To exploit the inherent produc-

CMVC allows UNAS device independent units, which tivity and quality advantages of standard UNAS components,
ae to remain identical across targets, to be controlled as we have also developed a Computer Aided Design capability
one configuration object. If a developer changes a known as the Software Architect's Lifecycle Environment
"joined" unit in one target implementation, the same (SALE) S. SALE automates the architectural object bookkeep-
changes are automatically enforced on the other target ing and provides interactive feedback to guarantee correct
versions of the same unit. The automatic propogation of structural syntax and semantics. SALE also encapsulates the
these changes can be postponed (but not avoided), if a UNAS knowledge base so that the logical design for the soft-
specific target is not to be impacted at the time of the ware architecture can be committed to error free executable
change. Ada source code automatically along with optional models ofapplication performance.

8. Incremental modification - Modification of controlled

Ada specifications can be done incrementally, i.e., if the REFERENCES
change does not directly impact a dependent unit (e.g.
adding something new to the specification), the Rational [1] Royce, W.E., "Pragmatic Quality Metrics For
Ada environment will not require that the dependent unit Evolutionary Development Models", TRI-A da
be ecompiled. Proceedings, Baltimore, December 1990.

The weaknesses of the Rational CMVC system (as well as [2] Royce, W.E., "TRW's Ada Process Model for
most other Ada CM systems) are that 1) it is very disk inten- Incremental Development of Large Software Systems",
sive and 2) it cannot handle implementation defined attributes, Proceedings of the 12th International Conference on
such as the VAX/VMS Ada specific" 'AstEntry." Currently, Software Engineering, Nice France, March 1990.
device dependent attributes are preserved by changing the line
to a comment, with a special marker, that must be removed [3] Royce, W.E., "Reliable, Reusable Ada Components For
when the code is downloaded to the actual target. (This type Constructing Large, Distributed Multi-Task Networks:
of line count is less than 10.) Network Architecture Services (NAS)", TRI-Ada

Proceedings, Pittsburgh, October 1989.
[14) Royce, WY., Development of Reusable Ada Packages

Positive experiences in reuse and portability are few and Using The VAX 8600 and the Rational R1000 Ada
far between. The NAS transition to UNAS represented a Environments. Proceedings of "Methodologies and Tools
complex challenge in portability. Since the inherent purpose for Real-Time Systems" Conference, National Institute
of these products was to isolate applications from the for Software Quality and Productivity", September 8,
underlying implementation complexities of the host/target 1986.
virtual machine, this effort was focusing explicitly on the most
target dependent parts of Ada and the boundaries of the [5] Grauling, C.R., "Network Architecture Services: An
language definition. The standardization of the Ada language Environment for Constructing Command, Control and
as well as disciplined, careful design resulted in a substantial Communications Systems", Second IEEE Workshop on
success story in portability. Future Trends of Distributed Computing Systems

The UNAS product has been retargeted to VAX/VMS, Proceedings, Cairo Egypt, October 1990.
SUN Unix, liP Unix, and the R1000 target platforms. Future
retargets to IBM's AIX, MAC I, VAX Ultrix and PC DOS (6] Grauling, C.R., "Pilot Command Center Testbed
are planned. This paper has described our experience in re- Development Environment: A better Way To Develop C3

designing and repackaging UNAS as a case study in Ada Systems", Submitted to Ada IX, 1991.
portability and our lesson-; learned in retargeting to multiple
platforms. In summary, we believe the number one lesson [7] Boehm, B.W., Royce, W.E., "TRW IOC Ada
learned is that building reusable and portable components is COCOMO: Definition and Refinements", Proceedings of
extremely doicult. It takes highly experienced personnel, the 4th COCOMO Users Group, Pittsburgh, November
sufficient schedule and excellent tools. But even more impor- 1988.
tandy, it takes real world users and usage on real world pro-
jects3,5.6 before the adjectives reusable and portable can be [8] Royce, W.E., Brown, D.B., "Architecting Distributed
used legitimately to describe a product. Realtime Ada Applications: The Software Architect's

Ada Cocomo' quantifies the complexity of building Lifecycle Environment", Submitted to Ada IX, 1991.
reusable components in a range from 0% to 50% added effort.
After many man-years of reusable and portable component de-
velopment, this range appears appropriate. We estimated that
NAS (reusable, but not portable) required 30% more effort so
that it could be reused in three CCPDS-R subsystems without
modification. UNAS clearly required at least 50% more effort
(and undoubtedly 50% more schedule) to also achieve porta-

187 9th Annual National Conference on Ado Technology 1991

CATALYST
AN INTEGRATED SOFTWARE ENGINEERING ENVIRONMENT

Sandra L. Mulholland

Rockwell International, Collins Commercial Avionics
Advanced Technology and Engineering Division, Cedar Rapids, IA

Abstract and goals within the avionics organizations of
Rockwell. This plan was used as the basis for

Within the Rockwell International, Collins an environment development project which
Commercial Avionics, Advanced Technology and was started in October, 1987, by the Avionics
Engineering Division (AT&E), there is an on-going Advanced Technology and Engineering
effort to develop an Integrated Software Engineering (AT&E) organization.
Environment (ISEE) that supports both government
and commercial projects. The name of this ISEE is In 1989, a Software Engineering
"Catalyst." This paper focuses on some of the
challenges presented in ISEE development: selecting Environment (SEE) Section was formed
an ISEE standard on which to base environment within AT&E that took over the environment
development; establishing an evolutionary development project and expanded its scope.
environment development path; and defining those The SEE section charter includes developing
functional capabilities that support a full software an ISEE which:
development life cycle. A brief discussion of the
benefits of having the ISEE used by real projects at
the same time as it is being developed is also Supports a high quality, software engineering
provided. process;

. Supports a full software development life cycle;

. Supports multiple software development
standards (commercial and government);

Backgrund . Supports multiple development languages;
. Supports systems of varying scopes and sizes

To be competitive in today's complex (e.g., rapid prototype vs. full development, 3000
software market, corporations must build lines of code vs. 100,000 lines of code, etc.);
systems exhibiting high quality, cost efficiency, Supports multiple application domains
and compliance with increasingly, (e.g., real-time, embedded avionics; data intensive,
sophisticated government and commercial real-time; display management applications, etc.);
development standards. In order to achieve • Supports and encourages software artifact reuse;
systems which meet these criteria,
corporations must: 1) apply software Automates formal and informal document
development standards in a prudent and generation/verification;
consistent manner; 2) apply a consistent, Is available on a distributed, heterogeneous
uniform process to all software development; platform;
3) automate the development process where Complies with, and embodies, applicable ISEE
possible; and 4) utilize an integrated software standards;
engineering environment (ISEE) which Supports an evolutionary environment growth
supports these requirements. path providing an effective, useable ISEE at all

In August, 1985, an environment stages of environment development;
development plan 4 was written which Maximizes the use of commercial off-the-shelf
identified the software development needs (COTS) products: and

9th Annual National Conference on Ada Technology 1991 188

* Exhibits the characteristics of tailorability, Be available on heterogeneous, distributed
flexibility, extensibility and enhanceability. platforms with a common user interface;

"Catalyst" is the name which has been given and, what is always a critical challenge,
to the ISEE developed under this effort. The
name is not an acronym, but simply identifies Be successfully inserted into corporate
the significant, positive change to software production efforts.
development that occurs as a result of the use
of the ISEE. Applicable ISEE Standards.

Catalyst Because an ISEE comprises many

In December 1990, Catalyst, version 1, was interacting components, there is an
completed. In this version, the major goal was abundance of standards efforts and/or
to develop an environment that supports an definition efforts, which may apply to an ISEE
engineering process which would : itself, or to individual ISEE components. The

fast pace at which technology is advancing in

DOD-STD-2167A 3 data item deliverables this area has created a situation where, in some
(DIDs) for the Software Requirements Analysis cases, more than one effort is targeting the
and Preliminary Design life cycle activities; same (or like) ISEE component for

" Establish good basic management capabilities standard/definition development.
such that systems developed utilizing Catalyst For example, MIL-STD-1838A, PCTE + ,
would enjoy a uniform level of high quality; and ATIS (CIS), and several other efforts target

" Encourage the reuse of project artifacts. tool integration; DIANA and IRIS target data
structure representation; GKS and PHIGS

Ch alngs. target graphical data representation; and
In order to accomplish this major MOTIF and Open Look target a common

In orer towindow presentation definition.
undertaking, the following challenges were

presented: In other cases, the objects involved in one
" Predict what emerging ISEE standard(s) will standard/definition effort are the same objects

apply in the future and ensure that Catalyst will that are used in another effort, and yet the
be compliant; object definitions are different. For example,

" Develop Catalyst in a manner that provides the IEEE P-1175 'A Standard Reference
constant SEE support to on-going Rockwell Model for Computing System Tool
projects at the same time that the environment Interconnections" ' 1 and the Department of
itself is being evolved to support a full ISEE Defense (DOD) Computer Aided Acquisition
concept; and Logistics Support (CALS) efforts have

" Define those functional capabilities that must be each defined classes, attributes and
provided by an ISEE in order to fully support relationships for some of the same objects.
the software development life cycle. Because there was no initial coordination

In addition to these challenges, the between the two efforts, at the present time
resulting environment had to: inconsistencies exist between the two

definitions. In other words, it is feasible that*Support multiple development languages; even in the future an ISEE may be tasked with

though the Cedar Rapids facility of Rockwell is a in re a t hae eqirmetsfo
very significant Ada developer, work is also supporting projects that have requirements for
being performed in other languages, such as C; P-1175 as well as projects that have

189 9th Annual National Conference on Ada Technology 1991

requirements for CALS. In this situation, the a brief discussion of each of these efforts and
objects created in a CALS-governed project a justification for the ISEE standard selected
will not be understood by objects created in a for Catalyst.
P- 175-governed project. In order to create
data interoperability between the two projects, ECMA TC33/TGRM Reference Model : In
a filter or "translator" would have to be built the "Document History" section of the ECMA
to convert the objects created under the Reference Model 6, the author, Anthony Earl
P-1175 definition to the CALS definition and states "When the ECMA Technical
vice versa. This situation compounds th Committee for PCTE standardisation (sic) was
massive translation problem that already faces formed, one of the decisions was to aim to
environment builders. It also makes it almost create a CASE environment framework
impossible for environment builders to easily Reference Model to assist the standardisation
determine which standard/definition best (sic) process. A Task Group (TC33/TGRM)
serves their purposes or which one should be was formed in 1988 to develop a complete
applied as it is the standard most likely to be Reference Model. During 1989 the first full
required on government or commercial version of the Reference Model was
contracts. created...".

Recent events show that the difficulties of Before the written ECMA Reference

this situation have begun to be noticed. For Model definition was distributed, the
instance, in a letter dated October 25, 1990, graphical illustration of the overall Reference
Robert M. Poston, Chairman of the IEEE Model structure 7 began appearing in
Computer Society Task Force on Professional environment builder presentations. In these
Computing Tools, announced the intention to presentations, the environment builders used
coordinate the IEEE P-1175 definition with this graphical illustration (now known as the
that of eALS, IRDS, PDES and CDIth "toaster model") to define those ISEE services
Another significant coordination effort that which are supported by their specific
has been undertaken is the "merging" and environments. In these presentations, every
redesign of the P"TE+ and MIL-STD-1838A toaster model component which was in some
definitions into the Portable Common manner supported by the subject environment
Interface Set (PCIS)2. This coordination was highlighted. The degree of support
between complementary or competing provided by the environment, was indicated by
standard/definition efforts must be achieved the degree of highlight applied. In order to
in order to establish a firm path for evaluate which environment best meets the
environment developers, requirements of a particular user, consumers

were encouraged to simply compare the
Even with all of the present confusion, for various toaster model representations. On the

future extensibility and standards compliance surface this seems like a great idea; something
reasons, environment builders must base their that all users can easily understand. However,
development efforts on an emerging ISEE the phrase "buyer beware" still applies when
standard. Two of these emerging standards are using these graphical environment service
the National Institute of Standards and mappings. Because these environment
Technology (NIST) ISEE Reference Model builders either did not have the written
and the European Computer Manufacturers definition of what ISEE services were
Association (ECMA) Task Group represented in each of the toaster model's
TC33/TGRM Reference Model6. Another graphical components or they did not have a

effort which may be considered to have major common understanding of how their specific

influence in the establishment of ISEE environment's services related to the ECMA

standards, is the Software Technology for definition, what results in trying to compare

Adaptable, Reliable Systems (STARS) the various toaster model mappings is often an

program. The following paragraphs provide

9th Annual National Conference on Ada Technology 1991 190

"apples to oranges" situation. Now that the being defined in the NIST Integrated Software
ECMA Reference Model document itself has Engineering Environment Reference Model.
been published, some of the earlier The baseline for the ISEE service definition is
environment mapping inconsistencies may be the SEE Framework Reference Model
overcome. developed by the ECMA Task Group

Overall, the ECMA TC33/TGRM TC33/TGRM 6. In the initial analysis of this
Reference Model is a very valuable source of definition, it was determined that
information for future ISEE standard efforts. TC33/TGRM's reference model primarily
As stated by Anthony Earl in the "Document addresses the component identified in Figure
History" section, of the ECMA Reference 1, as the "Framework." Other ISEE
Model6, "It should be understood that the components identified in Figure 1, and some
reference model is totally independent of additional functionality that is defined in the
PCTE and is not intentionally biased towards NIST ISEE Framework component, are not
PCTE. The ECMA group see (sic) it as an aid defined in the ECMA reference model. NIST
in identifying future standards that will be ISEE workshop participants are continuing to
needed in addition to PCTE. It is also a analyze the ECMA document to determine
valuable way of describing, comparing, and modifications/additions which must be made
contrasting CASE environment frameworks." in order to define a complete reference model

for the ISEE concept represented in Figure 1.
NIST ISEE Reference Model: In 1989, The resulting definition will be documented in

NIST began holding a series of ISEE the NIST Integrated Software Engineering
workshops. The objectives of these Environment Reference Model.
workshops, as defined by William Wong of the
NIST / National Computer Systems
Laboratory (NCSL)5, are to :
" Identify and explore fundamental issues in ISEE User User

areas;
" Identify the needed set of standards that define a

comprehensive interface for integrating software USER
tols -/EFAE U/i U/i [TOOL TOOL

oninerae tadrd frGENERATOR'Develop guidelines on interface standards for
ISEEs; and

" Provide guidance to Federal agencies to acquire
ISEEs. I T

At the NIST 2nd Workshop on ISEEs, a FRAMEWORK
graphical reference model (Figure 1) was
developed which the majority of the
participants deemed to be accurately PLATFORM -.. .
representative of the major ISEE components.
This model identifies and isolates those ISEE
component interfaces for which no standard Figure 1 - Graphical ISEE Reference Model
exists and for which no standardization effort
is presently underway.

NIST is utilizing this model to map all the
various ISEE standards/definitions into the
specific ISEE component(s) that they address.
The textual description of the services
orovided by each ISEE component is presently

191 9th Annual National Conference on Ada Technology 1991

STARS The Software Technology for The Software Engineering Institute's Software
Adaptable Reliable Software (STARS) Process Assessment Project has made contractors
program is developing ISEE technology. This very aware of how their marketability will be

technology is deliverable to the government in affected by delaying the definition and

1994. The STARS prime contractors (IBM, implementation of corporate improvements

Boeing and Unisys) are then free to continue supporting better software engineering practices.

development of the STARS ISEE technology 2. Government contracts require contractors to

and to market the resulting ISEE products to use a STARS-developed ISEE for software

industry, development; contractors receive the ISEE as

The question has been posed as to whether government furnished equipment.

or not an individual corporation's efforts to • Disadvantage - For most contracts, the cost to
install the ISEE, to train project personnel into its

develop an ISEE is a waste of time when use and to maintain the ISEE is, again, tacked
compared with the Department of Defense onto the cost of the contract itself. Again, the
(DOD) STARS effort, the amount of resources government is, in some manner, paying twice for
that are being expended in that effort, and the the ISEE.

probability that DOD policy will mandate the Disadvantage - The previously described
use of STARS-developed ISEEs, once they problems associated with corporations delaying
are delivered, the acquisition and usage of an ISEE, also apply

The STARS charter, as documented by Dr. to this situation.

John E Kramer in the STARS NEWSLETTER, 3. Government contracts require contractors to

Volume I, Number 1, dated May, 1990, does use an ISEE which is capable of achieving
not mention the manner in which the STARS data interoperability with the specific
ISEE technology will be utilized once it has STARS-developed ISEE utilized by the
been delivered. However, looking at the government agency sponsoring the project.
DOD's historical approach for enforcing the Advantage - In this scenario the government
utilization of government-developed avoids any additional contractual ISEE costs, and

technology, several possible scenarios may the contractors can act now to implement their
occur : specific, corporate software engineering practice

our t cimprovements.

. Government contracts require contractors to Disadvantage - This scenario could present a
use the environments developed under problem for the government in that a specific

STARS for software development; thus, contractor's ISEE may not function as stated by

contractors have to acquire the environments the contractor, and may cause some difficulties in
from IBM, Boeing, Unisys or subsequent delivery or maintenance. However, this
vendors, disadvantage has a positive solution. In order to

sthe cost to avoid this problem, the government should apply
Disadvantage - For most contracts,one into (or have the contractor apply) assessment

acquire the ISEE, to train project personnel into technology to the proposed ISEE to determine its

its use and to maintain the ISEE is tacked onto the funoliy an herece to tandrds.Ther

cost of the contract, itself. Even with a significant functionality and adherence to standards. There
pric dicout, hissitutio plcestheare many documents/studies which may be

price discount, this situation places the utilized to evaluate an ISEE. Specifically, the
government in the position of paying at least twice e System version 2.0, developed by the
for the ISEE; once for its development and then Ada Joint Program Office Evaluation and
again for its acquisition by a specific project. Validation Team; IEEE P1209 "The

" Disadvantage - The usage of an ISEE is needed Recommended Guideline for the Evaluation and
now. It is not economically nor competitively Selection of CASE Tools"; 'A Reference Model
feasible for a contractor to wait until a for Computer Assisted Software Engineering
STARS-developed ISEE is available to begin Environment Frameworks" developed by the
improving their software development practices. European Computer Manufacturing Association

9th Annual National Conference on Ado Technology 1991 192

(ECMA) Task Group TC33/TGRM; and the
"NIST ISEE Reference Model" and the "NIST of the L LE community are also looking
ISEE Reference Model Mapping Guidelines" beyond their specific interests to ascertain that
documents developed by the NIST ISEE work their technology is complementary to
shop participants associated technologies and that they are not,

in some manner, "re-inventing the wheel."
Part of the STARS charter is to stimulate Because of the enormous amount of resources

community development of ISEE technology, required to perform all the work involved in
With this purpose in mind, in any of the above the ISEE area, it is to the benefit of everyone
scenarios, an individual corporation's efforts to make this happen. There is evidence that
to develop an ISEE benefits both the STARS this coordination of effort has begun.
program and the individual corporation. Because they have common goals, the
Within the STARS program, corporate ISEE ECMA and NIST ISEE efforts have made a
development can be viewed as an indicator of commitment to assist each other in the
successful ISEE technology stimulation. establishment of a standard ISEE reference
In-house ISEE development serves the model. Beginning with the 3rd NIST ISEE
specific needs of the corporation while work shop, STARS prime contractors began,
enhancing the corporation's competitive and have since continued, active participation
stance. Thus, individual corporate ISEE in the NIST ISEE Reference Model effort. In
development efforts that comply with ISEE late 1990, William Wong of N1ST/NCSL made
community standards, should not be viewed as several presentations concerning the NIST
interim solutions that will be replaced by ISEE work to groups involved in ISEE
STARS-developed ISEEs. Because of this, standard development (e.g., IWCASE, AIAA,
the Catalyst and STARS ISEEs efforts should etc.). The response he received from these
not be thought of as competitive, but should be presentations indicated a great community
viewed as complementary efforts. desire to coordinate ISEE standardization

If the DOD chooses to adopt a policywhich efforts. It is expected that these groups will
implements STARS-related technology in the either participate in or utilize the information
manner described in the third szenario, that is created by the NIST ISEE effort.
Catalyst's planned growth should ensure that After reviewing the NIST ISEE, ECMA
it will be capable of communicating with a TC33/TGRM, STARS and other related
STARS-developed ISEE and that a good efforts, the emerging ISEE standard selected
degree of data interoperability between the for use in Catalyst is the NIST ISEE Reference
STARS-developed ISEE and Catalyst will be Model. In order to ensure Catalyst's
achieved. compliance with the NIST ISEE Reference

ISEE Standard Selection The ideal Model, Rockwell is taking an active role in the

situation for environment builders is for all development of this standard; participating as

ISEE standards groups to coordinate their a member of the NIST ISEE steering

efforts. In the past, there have been some committee and chairing the Mapping

"territorial boundaries" which have worked to Guidelines Working Group.

prevent any great degree of coordination from
happening. However, today's ISEE Evolutionary ISEE Development.
community is paying heed to the "lessons As previously seen in Figure 1, two of the
learned" of the past and is working very hard more significant aspects of an ISEE are the
to overcome any obstacles which prevent the separation of the user interface from the actual
coordination of good technology. Individuals functionality of a tool and the establishment of

193 9th Annual National Conference on Ada Technology 1991

a framework through which all tools and users has a history of working: Vendors A and B
(through their user interfaces) communicate, cooperate with each other to develop a

Because of the internal requirement to mechanism by which their products can
immediately field a SEE which enhances communicate and achieve data interoperability
software development productivity, increases with each other. The third method is the least
product quality and encourages product desired, but in many cases is the only option
artifact reuse, the first version of Catalyst available: the environment builder creates tools
(completed in December 1990) does not fully that act as interfaces, translators or filters
embody these two ISEE characteristics. The between Vendor A and Vendor B products.
functionality of Catalyst, version 1, is more Rockwell has been very fortunate in that the
accurately represented by Figure 2, below, vendors selected for Catalyst have, for the

As stated earlier, one of the requirements most part, supported the use of method 2,
for Cataytd ei, ona e othe reuse n ofCabove, and have participated in thefor Catalyst is to maximize the use of COTS achievement of tool-to-tool communication,

products. This allows in-house environment to varying degrees of success. Very limited use
development efforts to be focused on issues of method 3 has been applied in Catalyst,
such as process, integration, automation, version 1. In the future, vendor product
management, verification and availability, enhancements should allow environment

builders to implement (the highly desired) first
method, in their utilization of COTS products.

In method 2, because the vendors are
e Usupporting the communication of their

respective products, that communication is
guaranteed to be supported through all
product enhancements; a direct benefit to the

TOL T L. environment builders. This method also
...... places the impetus on the vendors to provide

support for data interchange standards within
their products. The use of these standards is
a very important key to the success of the next

_ step in Catalyst's development: the
PLATFORM introduction of the 'framework' ISEE

component and the creation of an

Figure 2 - Catalyst, version I environment user interface.

Catalyst, version 2, will remove the
When COTS products are used, there are tool-to-tool interface and replace it with the

three ways in which to get Vendor A's product tool-to-framework interface. It will also
to understand the data from Vendor B's remove the tool-to-platform interface and
product (i.e., data interoperability). The first replace it with a framework-to-platform
method is the most desired, but at present is interface. The implementation of an
the option that is least likely to be achieved: environment user interface that separates the
both Vendor A and Vendor B's products support users from direct communication with the
the same data interchange standards. The tools, will be the first step towards the full
second method is not as desirable as the first, implementation of a user interface generator
and in some cases is impossible to achieve, but tool. These major development goals for

9th Annual National Conference on Ada Technology 1991 194

Catalyst, version 2, are depicted in Figure 3, characteristic it is unclear whether or not this
below. will be directly achievable in a "near"

timeframe. If not, Catalyst, version 3 will
embody the maximum degree of support
possible for this ISEE characteristic.

Catalyst's evolutionary environment
I m development plan allows Rockwell's projects

ENVIRONMENT USER INTERFACE to immediately benefit from the use of a SEE
and supports Catalyst's continued growth
towards full implementation of a standard
ISEE concept.

.......... .As Catalyst is growing towards a full ISEE
concept, it will also be growing in terms of
capability. The present functional status and

Favailability of Catalyst, version 1, is discussed
below.

........ .PLATFORM . . -Capabilities of Catalyst. version 1.

The implementation of characteristics that
3 serve to identify a collection of tools and/or

utilities as an ISEE are important to
In order to further facilitate the ease of environment builders. However, for the most

transition from tool-to-tool to part, they don't impress environment users
tool-to-framework communication, all tools (unless those ISEE characteristics get in the
which were created in-house for Catalyst, user's way and then they are negatively
version 1, perform data identification, impressed). For this reason, it is important to
manipulation, verification and documentation discuss the specific software development
based on the specific process definition and capabilities supported by Catalyst that are
object classification that pertains to that data. available to the user. The following identifies
Some of the more significant tools created for Catalyst's host platform availability and the
Catalyst, version 1, are the Requirements specific software development life cycle
Management utility, the Project Unique activity capabilities supported in Catalyst,
Identifier utility and the Automatic version 1.
Documentation Generation toolsets. Host Platform Availability : The pilot host

With Catalyst, version 2, in place, the next platform for Catalyst, version 1, is the Apollo
evolutionary step will be to implement the user workstation utilizing UNIXbsd4.3. From the
interface generator tool and to transition the Apollo platform, Catalyst was ported to the
environment user interface to the control of SUN Sparcstation, again utilizing UNIXbsd4.3.
that ISEE component (shown in Figure 1). Leaving the UNIX world, Catalyst was then
This step also requires the transitioning of the ported to the DEC VAXStation 3100 utilizing
COTS products' user interface control, to this VMS. The third environment port is planned
ISEE component. for the DEC DECStation utilizing Ultrix.

Because of the technical and societal Life Cycle Activity Support: The following
complexities involved in achieving this ISEE identifies the major software development life

195 9th Annual National Conference on Ado Technology 1991

cycle activity capabilities supported by 2. Fl support for prdiminwy design activity;
Catalyst, version 1. specific capabilities are :

1. Full support for the software requirements Preliminary Design Engineering.

analysis activity; specific capabilities are: * Implements process that supports projects of all
sizes and any development language

0 Requirements Engineering. (doesn't fall apart when project grows or shrinks

" Verification and isn't so specific in its support of certain
(Vrction y clanguage features that it is rendered useless or
(consistency, correcess, completeness and static inefficient for use with languages that don't
performance) support those features)

" Automatically documented in SRS and IRS Automatically documented in SDD, vn 1, and
IDD

* Requirements Management. • Requirements Transition.

" Verification • Controls requirements transition from software
(consistency, correctness and completeness) requirements analysis activity to preliminary

" Tracking / Traceability design activity

(CSCJ and System levels) • Requirements Management.

" Automatic documentation in SRS * Verification
(CSCI and System levels) (consistency, correctness and completeness)

• Requirements Qualification. * Tracking / Traceability
(development objects and document objects)

" Verification
(consistency, correctness and completeness) Automatic documentation in SDD, vn 1

" Automatically documented in SRS Project Management.
(CSCI level only; System level is documented in * Verification of process usage
the Software Test Plan)

* Automatic, dynamic generation of SDD, vn I
* Project Management. and IDD supports incremental, frequent

generation of documents is utilized for project
" Verification of process usage progress tracking

" Automatic, dynamic generation of SRS and IRS " Support for Change Impact Analysis:

supports incremental, frequent generation of The controls placed on requirements transition
documents which is utilized for project progress facilitate the identification of the extent of impact,
tracking upon receipt of a change request.

• Support for Change Impact Analysis: 3. Full support for detailed design activity;

All sourceldestination occurrence pairs of data specific capabilities are :

elements and interfaces are automatically and * Detailed Design Engineering.
dynamically generated and documented in the
SRS. Implements a process which supports projects

All possible context views of requirements are of all sizes and which are developed in either
automatically and dynamically generated and Ada or C
documented in the SRS on both a CSCI and (the reasons for the present language limitation in
System-level basis. the detailed design activity, are mostly conceptual)

9th Annual National Conference on Ada Technology 1991 196

" Automatically documented in SDD, vn 2 " Automatic generation of Software
(presently under development) Development Files (SDF) and SDF artifacts,

facilitating configuration management
•Requirements Management.

Requiremens Mo Support for Change Impact Analysis:
" Verification

(consistency, correctness and completeness) The Requirements Management process
facilitates the identification of all objects impacted

• Tracking / TIraceability by a specific change request.
(development objects and document objects)

" Automatic documentation in SDD, vn 2
(presently under development) Catalyst Development Process Definition:

SProject Management. In order to achieve the amount of
" Verification of process usage automation, documentation and verification
" Automatic, dynamic generation of SDD, vn 2, that has been accomplished in Catalyst,

supporting incremental, frequent generation of version 1, a development process had to be
documents which is utilized for project progress established which would result in the uniform,
tracking consistent development of high quality project

SSupport for Change Impact Analysis: artifacts. In developing this process,
Th SpRequrChaeImt Manaysis p s engineering, testing and documentationThe Requirements Management process objectives were reviewed to assure that the

facilitates the identification of all objects impacted defined process did not ignore requirements
by a specific change request.deieprcsddnoig reeqrmnt

for the accomplishment of any particular

4. Support for code/unit test activity; specific objective. From this effort, a preliminary
capabilities are: development process was defined. This
Uniform code creation. process definition was then analyzed from the

context view of both commercial and
" Provides common native code generation for government projects. What was discovered is
Ada source that the engineering objectives for commercial

" Allows each project to insert the specific target and government projects are essentially the

code generator required by their project same. Some differences exist in the testing
objectives due to the application of more or

Requirements Management. less rigorous verification requirements.

o Verification However, it was determined that most of the
(fction , cdifferences existing between commercial and
(consistency, correctness and completeness) government projects occur in the area of

* Tracking / Traceability documentation. Upon closer review, it was
(development objects and document objects) found that the differences in this area centered

Automatic Generation of "White Box" test more in the area of document format rather
casesomaed Geon C loCS def"hition). testhan content. Because the proposed
cases (based on CSU and/or CSC definition), development process identifies and

* Facilitates "cleansing" and verification of code manipulates data based on its object
prior to moving to target test environment classification, the process was deemed to

Project Management. exhibit the qualities of flexibility and
tailorability, and was, thus, appropriate for use

• Verification of process usage in both commercial and government projects.

197 9th Annual National Conference on Ada Technology 1991

Next, the proposed process definition was associated with the environment (i.e., process,
analyzed to determine its applicability to capabilities, capacities, etc.). The immediate
multiple application domains, sizes and source feedback received from the users (positive and
language implementations. After ensuring negative) helped shape the environment into
that the process provided support for all these a technology that has been proven to support
issues, the definition was finalized and the real needs of projects.
adopted as the Catalyst software development The "willingness" that was exhibited by
process. This process is documented in the most project personnel and managers to make
Catalyst Environment Reference Manual. the effort to learn and implement this new
Projects that utilize this development process technology (in any way possible and at
gain the full benefits of Catalyst. Projects that whatever the cost), is further evidence that the
partially utilize it, or are too far into technology meets some of their major
development to begin use of Catalyst, still development needs. The cooperation received
benefit from the many "stand-alone" from project personnel using Catalyst while
capabilities supplied by Catalyst. the environment builders were trying to

A significant benefit that has already been enhance it, was greatly appreciated by the
demonstrated by several Rockwell projects is environment builders.
that even partial usage of Catalyst by one After two years of experiencing the pitfalls
project results in the opportunity for project associated with inserting ISEE technology into
artifact reuse by other projects. This corporate production efforts, it is felt that the
opportunity for software development artifact technology transfer procedures that have been
reuse has been taken many times by new established for Catalyst, while not perfect, do
Rockwell projects; and has, in turn, achieve some significant success in technology
encouraged those new projects to utilize transition.
Catalyst in their development.

It may seem strange that projects would References
have to be "encouraged" to use a technology
that has been proven to save development time ' IEEE Computer Society's Task Force on
and increase product quality. However, the Professional Computing Tools, "(Draft) A Standard
introduction of new technology, no matter Reference Model for Computing System Tool
how beneficial it is, has direct financial and Interconnections", October 5, 1990.

schedule impact on each project trying to 2 C. Colket, PCIS Effort Gets Reviewers. Expert
incorporate it. Team. Ada Information Clearinghouse Newsletter.

Conclusion December 1990.

Even though, Catalyst, version 1, was 3 U.S. Department of Defense, Defense SystemEventhoghCatlyst vesio 1,wasSoftwtare Development. DOD-STD-2167A, 29

completed in December 1990, it has actually February 1988.

been utilized for production purposes since

January 1989, by various Rockwell projects 4 H. Romanowsky, 'Ada Programming Support
(multiple applications, sizes and languages). Environment Development Plan", Version 1.0,
While the difficulty in building the August. 1985.
environment was magnified due to the need
to provide constant support to actual users 5 W Wong, "Summary of the 4th Workshop on
during its development, the experience also Integrated Software Engineering Environments
provided an invaluable "test" of everything (ISEE)", October 30, 1990.

9th Annual National Conference on Ada Technology 1991 198

6 A. Earl, ECMA Task Group TC33/TGRM's "A
Reference Model for Computer Assisted Software
Engineering Environment Frameworks", version
4.0, August 17, 1990.

7 A. Earl. ECMA Task Group TC33/TGRM's "A
Reference Model for Computer Assisted Software
Engineering Environment Frameworks", version
4.0. page 11, Figure 1, August 17, 1990.

Biography

Sandra L Mulholland
Technical Staff Member
Rockwell International
Collins Commercial Avionics
MS 124-211
400 Collins Road NE
Cedar Rapids. IA 52498
(319)-395-4047
Ms. Mulholland is Project Engineer for the Catalyst
Life Cycle Toolset. Ms. Mulholland has been very
active in the Ada and environment technology
communities. Ms. Mulholland is a Technical Advisor
to the Software Productivity Consortium's Integrated
Software Engineering Environment project
(1990-present): an invited participant of the National
Institute of Standards and Technology Integrated
Software Engineering Environment Work Shop
series (1989-present): a member of the NIST ISEE
steering committee, chairperson of the NIST ISEE
Reference Model Mapping Guidelines working
group: a selected member of the Portable Common
Interface Set (PCIS) Expert Review Team: a member
of the IEEE Standards Working Group P1209: and a
member of the ACM/SIGAda Software Development
Standards and Ada working group. Ms. Mulholland
has participated as an invited expert panelist on the
-Joint Integrated Avionics Working Group Proposed
Ada 9x Changes" panel sponsored by the AdaJUG
Embedded Computing System Ada Issues Working
Group (July 1989) and on the "Software First" panel
sponsored by Tri-Ada (October 1989). From
September 1985 until its disbandment in September
1990. his. Mulholland was a Distinguished Reviewer
for the Ada Joint Program Office, Evaluation &
Validation Team participating specifically in the
Requirements Working Group, the Classification
Working group, the Ada Compiler Evaluation
Capability Working Group and the review of the
AJPO Ouality Testing Service plan. Ms. Mulholland
received a Bachelor of Arts from the College of
Natural Sciences at the University of Texas at Austin
in May 1983.

199 9th Annual National Conference on Ada Technology 1991

TRANSFORMING THE 2167A REQUIREMENTS DEFINITION MODEL INTO AN

ADA-OBJECT ORIENTED DESIGN

Joseph T. Lukman

Contel Corporation, Government Systems Group

31717 La Tienda Drive, Westlake Village, California, 91359

Abstract (CSCI).1 The preliminary design section
of the Software Design Document (SDD)

This paper defines how to derive an Ada- combines requirements definition with
object oriented design from DOD-STD- Computer Software Unit (CSU) level
2167A. The requirements specification design.2 Both documents can define the
and preliminary design of DOD-STD-2167A software system requirements as Data
use data flow diagrams and supporting Flow Diagrams (DFDs) with supporting
data dictionaries. Guidelines are given data dictionary.
to derive objects from data flow
diagrams and data dictionaries, and to ANSI/MIL-STD-1815A specifies the
implement these objects in Ada. DOD- programming language Ada.3 Ada has been
STD-2167A is tailorable to identify the designated to be the programming
system objects, while still maintaining language for all DoD software. Its
functional decomposition. The software purpose is to provide a standard
requirements specification can be programming language for all embedded
expanded to define objects, and document computer system software.4 Ada uses
the data and functional requirements many of the programming language
distributed to them. An addition to the constructs inherent to the object
preliminary design section of the oriented paradigm. If an object
software design document can define the oriented software design is derivable
high-level design of the entities from the SRS and preliminary design
including data element identification section of the SDD, then Ada programming
and behavioral description, is simplified.

This paper defines techniques for
Introduction transforming the requirements definition

model derived for DOD-STD-2167A into an
The cost and complexity of developing object oriented design. The programming
software systems has risen dramatically language Ada implements the object
during the past fifteen years. To oriented design. Included is a brief
combat the rising financial burden and introduction to the object oriented
to increase the life of the system, the paradigm and Ada, followed by techniques
Department of Defense (DoD) has turned for transforming DFDs and data
to open system architectures, software dictionaries into an object oriented
modularity and transportability. In design. Suggestions are made for
this environment, two standards are of tailoring DOD-SrD-2167A to better
particular importance to software represent object oriented software
developers. Documentation standard DOD- development.
STD-2167A defines a uniform system
development representation. DoD
programming standard ANSI/MIL-STD-1815A The Object Oriented Paradigm and Ada
defines a software implementation tool.
These standards combine to modularize The object oriented paradigm reduces
the software development life-cycle. software cost and complexity by

increasing software reusability. The
The documentation standard DOD-STD-2167A heart of the object oriented paradigm is
is applicable throughout the system the modularization of the system's
development life-cycle. The Software processes and data. Abstract data types
Requirements Specification (SRS) are modular program units which increase
document specifies the engineering and software reusability by providing an
qudlification requirements for a implementation independent interface to
Conputer Software Configuration Item implementation dependent code. An

9th Annual National Conference on Ada Technology 1991 200

abstract data type is the encapsulation required activities and data elements of
of an underlying data type with a set of the CSCI. The preliminary design
operations that act upon the data type.5 section of the SDD specifies at the CSU-

level the CSCI design. The SRS and SDD
Abstract data types are realized through accomplish these tasks through a
class definitions. A class defines both decompositional view of the system which
an underlying data type and a set of may include DFDs with accompanying data
operations known as methods. The dictionary.
methods dictate the behavior of the
class. A method is invoked to Data Flow Diagrams
manipulate the underlying data type.
Sending a message to an object including DFDs support the CSCI decompositional
an object name, method name and view of the system requirements. They
parameter list, invokes a method. An decompose the requirements of a system
object is the instance of a class, into a network of processes

interconnected by data flows. DFDs
The programming language Ada contains describe the CSCI's external interfaces,
constructs implementing much of the data at rest within the CSCI and the
object oriented paradigm. This report processes required by the CSCI.
focuses on packages and generics, the
Ada constructs well suited for realizing Section 3.1 of the The SRS and SDD
abstract data types. detail the external interfaces of the

CSCI. A context diagram graphically
Package program units normally consist depicts these interfaces as data flows
of a §pecification part and a body between the system and external
part.b The specification part defines entities. The context diagram
elements of the package visible to the identifies external entities as
outside world. Such definitions might terminators. Terminators transform into
be subroutines (both functions and objects implementable as Ada packages.
procedures), constants, data elements, A separate object encapsulates each of
etc. The body part defines how the the system's terminators.
package operates by implementing the
subroutines defined in the specification Interfaces between the system and its
part. Elements of the body part not terminators can be encapsulated within
defined in the specification part are objects. This is accomplished by
hidden f om the software which use encapsulating all device dependent calls
package. between the system and a specific

terminator within an object. The
Generic program units are subroutines methods of the object provide a system
and packages containing partially independent interface to the terminator.
specified parameters. The parameters Sending a message to the object extracts
are identified and the generic is information from or gives information to
invoked during compilation.8 Since the a terminator.
generic may be a package, it is also
used to implement objects. Ada packages and generics can implement

objects encapsulating terminators.
Package and generic program units can Visible subroutines and variables
implement abstract data types by hiding provide a device independent interface
data elements within the package body. between the software and the terminator.
A data element is encapsulated within Hidden subroutines and executable code
subroutines by hiding the data element send information to and read information
and making the subroutines acting upon from the terminator. If the device
it visible. The visible subroutines dependent hidden interface between the
correspond to methods in the object system and the terminator changes, the
oriented paradigm. device independent visible package

interface does not.

2167A Structured Analysis Model Section 3.3 of the SRS and section 3.1.2
of the SDD detail the internal

DOD-STD-2167A requires documentation interfaces of the CSCI. DFDs
generation throughout the system graphically depict the internal
development life-cycle. The SRS and the interfaces as data flows between
preliminary design section of the SDD computer software components. DFDs
are of particular interest to software identify data flows at rest as data
developers. They define the stores. Data stores transform into the
requirements and how the software will hidden data structure of objects
satisfy them. The SRS specifies the implementable as Ada packages.

201 9th Annual National Conference on Ada Technology 1991

The object oriented paradigm views all having return value, implement the
data as objects and all objects as data. output from the process.
The object oriented paradigm therefore
considers DFD data stores as objects. Ada packages and generics implement DFD
In transforming a data store into an processes transforming into individual
abstract data type, both the data store objects. The hidden data structure of
and the processes manipulating the data an Ada package implements the equivalent
store must be considered. The internal input and output data flow of the
data structure of the object implements process. Visible and hidden
the data store. Processes manipulating subroutines combine to implement the
the data store become the methods of the functionality of the process.
objects.

Data Dictionary
Ada packages and generics encapsulate
DFD data stores with the manipulating Section 3.4 of the SRS dictates a data
processes. The data store transforms dictionary. The data dictionary
into hidden data structure of an Ada provides information including a brief
package. Visible package subroutines description, units of measure, etc, for
implement the processes manipulating the each data element internal to the CSCI.
data store. Being a functional It specifies the source and destination
description, the processes describe the processes of each DFD data flow.
functionality of the package. The Similarly, the data dictionary details
correspondence between a process and each data flow in the context diagram.
subroutine is not necessarily 1:1. Since the object oriented paradigm
Visible and hidden subroutines combine considers all data as objects and all
to realize the process's functionality, objects data, the data dictionary
Thus, a simple process updating a data identifies objects for the object
store might transform into one or many oriented design. Ada packages realize
subroutines manipulating hidden data these objects.
elements. The visible subroutines
provide access and allow manipulation of The object oriented paradigm considers
the data elements. each data element of the data dictionary

an object. Yet, an optimal Ada design
Section 3.2.X of the SRS and section and would not have a distinct package for
section 3.1.2 of the SDD define the each data element. A rule of thumb
capabilities of the system. Execution approach is needed to help identify
and control definitions throughout which data elements transform into Ada
different states and modes describe the packages.
capabilities. DFDs graphically
represent capabilities as processes. A simple approach to identify data
Processes transform into many aspects of structures which transform into Ada
an Ada design including subroutines and packages is as follows: note the
packages. compound data elements of the data

dictionary. The compound data elements
A DFD process describes a required are data decomposing into multiple data
capability of a system. In many elements. Of these, list the compound
instances, a process transforms into the data elements most critical to the
method(s) of an object. The method(s) system's success. The judgement of the
implements the functionality of the system designer determines the
object. In other instances, a process "criticalness" of an abstract data
transforms into an individual object. element. The output from this step is a
If an input is equivalent to an output list of compound data elements deemed
of a process, the process is critical to the success of the system.
transformable into an individual Convert these elements to objects.
object. 9 The equivalent data flows
become the internal data structure of The abstract data elements critical to
the object within the functionality of the system's success are transformed
the process. into objects in an object oriented

design. Ada packages realize the
Ada subroutines within a package or objects. The hidden data structure of
generic implement the functionality of packages implement critical data
DFD processes. A visible subroutine, dictionary elements. Visible
either a procedure or function, operates Subroutines provide access to the hidden
on the input data of the process. A data structure. Visible subroutines in
return value from a function, or an Ada package can incorporate DFD
parameters of a subroutine specified as processes manipulating the critical data

element.

9th Annual National Conference on Ada Technology 1991 202

Object Oriented 2167A 3.2, CSCI capability requirements, and
3.3, CSCI internal interfaces. Entity

DOD-STD-2167A enforces no specific relationship diagrams may be used to
developmental methodology. It permits illustrate the structure and
software design to be documented as capabilities of the entity.
object oriented. But tracing the
requirements from a function oriented Required data elements allocated to the
SRS to an okject oriented SDD is object are described in the data element
difficult.l- The difficulty reduces section. The capabilities section
when the SRS is object oriented.1 1 This describes required manipulations of the
presents a problem to many software data elements. Both sections reference
developers who find it difficult to previously stated requirements, and
interpret DOD-STD-2167A as object their purpose is to identify the
oriented. For these developers, allocation of requirements to objects.
supplemental paragraphs in the SRS and
SDD can be added to better represent Software Design Document
object oriented software development.
The paragraphs supplement a function The preliminary design section of the
oriented SRS and SDD to identify SDD details the CSU level design of the
allocated requirements and high level CSCI. This section allows the
design of system entities. Government to view the overall software

design without design details. To
Software Requirements Specification represent the design of object oriented

software, an additional preliminary
Entity identification in the SRS can be design section can add the high level
accomplished through a redistribution of design of system entities. The
the requirements definition model. DOD- following paragraphs suggest additions
STD-2167A views the requirements as a to the preliminary design section of the
decomposed network of activities SDD to define the high level design of
interconnected by data flows. This is a system entities.
top-down requirements definition.
Entity identification depicts the system CSCI Entities. This Paragraph shall be
as a compilation of distinct abstract numbered 3.3 and shall be divided into
data elements, each data element having the following subparagraphs to describe
precisely defined capabilities. The the software entities of the CSCI.
entity relationship model is a middle-
out requirements definition. Object (Entity name) data elements. This
oriented system design and Ada subparagraph shall be numbered 3.3.X.1
programming logically realize a middle- (beginning with 3.3.1.1), shall identify
out analysis. The following paragraphs the CSCI entity by name and shall state
suggest additions to the SRS to identify the purpose of data elements of the
the data elements and capabilities of entity. Identify and state each data
the system entities. element of the entity. The design

information for data elements shall be
CSCI Entities. This Paragraph shall be provided in section 5.
numbered 3.3 and shall be divided into
the following subparagraphs to describe (Entity name) capabilities. This
the capabilities of the CSCI. subparagraph shall be numbered 3.3.X.2

(beginning with 3.3.1.2), shall identify
(Entity name) data elements. This the CSCI entity by name and shall state
subparagraph shall be numbered 3.3.X.1 the purpose of the entity. This
(beginning with 3.3.1.1), shall identify subparagraph shall identify the
the CSCI entity by name and shall preliminary design of the entity. Some
specify the required data elements of or all of this information may be
the entity. Some or all of this referenced and provided by section 3.2,
information may be referenced and CSCI design description. Entity
provided by section 3.4, CSCI data relationship diagrams may be used to
element requirements. illustrate the structure and

capabilities of the entity.

(Entity name) capabilities.
This

subparagraph shall be numbered 3.3.X.2 The data element section describes the
(beginning with 3.3.1.2), shall identify high level design of the internal data
the CSCI entity by name and shall state structure of the object. The
the capabilities of the entity. Some or capabilities section details the high
all of this information may be level design of the objects subroutines.
referenced and provided by section 3.1, Both sections reference design
CSCI external interface requirements, information, and their purpose is the

203 9th Annual National Conference on Ada Technology 1991

allocation of system design to software Software Design Document, Document
objects. Number DI-MCCR-80012A.

3. The following document provides
Conclusion further information on the Ada

programming language: United States
An object oriented design can be derived Department of Defense, Reference Manual
from the SRS and SDD preliminary design for the Ada Programming Language:
section of the DOD-STD-2167A. Ada ANSI/MIL-STD-1815A (1983).
implements an object oriented design.
Ada programming is simplified by using 4. Norman H. Cohen, Ada as a
the transformation techniques defined in Second Language, (New York: McGraw Hill,
this paper to derive an object oriented 16) g. .
system design from a functional
requirements analysig. 5. Richard S. Wiener and Lewis J.

Pinson, An Introduction to Object-
Both the SRS and preliminary design Oriented ProRramming and C++, (Reading,
section of the SDD can be supplemented Mass: Addison-Wesley Publishing Company,
to reflect object oriented system 1988). Pg. 1.
analysis and system design, while still
maintaining a functional decomposition 6. Serafino Amoroso and Giorgio
approach. The SRS can be expanded to Ingargiola, Ada: An Introduction to
identify system entities and dictate the Program Design and Coding, (Marshfield,
functional and data requirements Mass: Pitman, 1985). Pg. 27.
allocated to them. An addition to the
preliminary design section of the SDD 7. Serafino Amoroso and Giorgio
can define the high level design of Ingargiola, Ada: An Introduction to
system entities, including both data Program Design and Coding, (Marshfield,
element definitions and behavioral Mass: Pitman, 1985). Pg. 28.
description. The additions suggested in
this paper identify the requirements and 8. Serafino Amoroso and Giorgio
design of system entities from Ingargiola, Ada: An Introduction to
functional descriptions. Program Design and Coding, (Marshfield,

Mass: Pitman, 1985). Pg. 129.
Work to be done on this topic includes
research in object granularity. What is 9. Bruno Alabiso, "Transformation
optimal, a few big objects or a lot of of Data Flow Analysis Models to Object
small objects? What are the factors Oriented Design", in OOPSLA '88
influencing object granularity? Also, proceedings. Pgs. 340 - 341.
each element of the data dictionary is
considered an object. Can automatic 10. JL/CSM (Joint Logistics
methods be generated to accurately Commanders / Subgroup on Computer
derive useful and necessary objects from Software Management), "Software
the data dictionary? The object Development Under DOD-STD-2167A: An
oriented approach is quickly gaining Examination of Ten Key Issues", (October
notoriety as a powerful software 25, 1989). Pg. 8.
development tool. Advances in this
field shall combat the software crisis 11. JLC/CSM (Joint Logistics
by promoting open system architectures, Commanders / Subgroup on Computer
software modularity and Software Management), "Software
transportability. Development Under DOD-STD-2167A: An

Examination of Ten Key Issues", (October
25, 1989). Pg. 8.

Notes

1. The following document provides
further information on the 2167A SRS:
United States Department of Defense,
DOD-STD-2167A, Data Item Description
for Software Requirements Specification.
Document Number DI-MCCR-80025A.

2. The following document provides
further information on the 2167A SDD:
United States Department of Defense,
DOD-STD-2167A: Data Item Description for

9th Annual Nafional Conference on Ada Technology 1991 204

Joseph T. Lukman, 1060 Hendrix Ave.
Thousand Oaks, California, 91360
Joseph T. Lukman graduated from
California Lutheran University in
Thousand Oaks, Ca., with a Bachelor of
Science degree in computer science, and
from California State University at
Northridge with a Master of Science
degree in computer science. Recent areas
of research have included image
processing architectures, rapid
prototyping and object oriented system
design.

205 9th Annual National Conference on Ado Technology 1991

AN OVERVIEW OF THE CLEAR LAKE LIFE CYCLE MODEL (CLLCM)

Kathy Rogers Michael Bishop Dr. Charles McKay
The MITRE Corporation Unisys Software Engineering Research Center
1120 NASA Road 1 600 Gemini Avenue University of Houston-Clear Lake
Houston, Texas 77058 Houston, Texas 77058 2700 Bay Area Boulevard, Box 447
(713) 335-8568 (713) 483-1753 Houston, Texas 77058

(713) 283-3830

Abstract

A system engineering life cycle model should The CLLCM conceptual model decomposes
be predicated on precise models which, in life cycle support environments into four
turn, are based on sound concepts and major segments: platform, framework, tools
principles. This paper reviews the concepts and manual procedures, and stable interface
and principles upon which the Clear Lake sets 2. The platform, shown in Figure 1-1,
Life Cycle Model (CLLCM) is based and consists of a collection of hardware,
presents the architecture, standards, and operating systems, data base and file
disciplines that define the model. The paper management systems, and data
also discusses the risks and benefits of the communications systems. The platform is
model. Emphasis is placed upon the model's encapsulated by a stable interface set which
unique strengths in support of managing provides an integrated view of the underlying
change control and integration across the life services and resources. The set of stable
cycle. The model has been referenced by platform interfaces a'.o promotes the
several programs and agencies including the transportability and interoperability of the
Software Technology for Adaptable, Reliable framework implementation. The framework
Systems (STARS) Program, the Space is the key to the life cycle management of
Station Freedom Program (SSFP), and the integration, change control, persistence, and
National Institute of Standards and traceability. The framework and its support
Technology (NIST). for four levels of abstraction are believed

necessary for future life cycle support
Keywords: Life cycle model, change environments, as will be discussed in the
control, framework, integration, system remainder of this paper. The stable interface
engineering, software engineering set that separates the framework from both
environments, risk management, stable the tools and the sets of user interfaces is
interface set. intended to be consistent with CAIS-A

[CAIS-A, 198 r I but is extended to provide a
much finer granularity of semantic

1.0 Introduction representation wherever needed. The heart of
the framework is its ability to manage precise

The Clear Lake Life Cycle Model (CLLCM) semantic models involving traceable sets of
consists of a conceptual model of life cycle products, processes, and interfaces.
support environments and a proposed
mapping to implementation models. This
paper focuses on the logical properties of the
conceptual model. A separate paper, 2 concept of a stable interface set must
[McKay, 1988], describes the issues embodythreecharacteristics:
involved in mapping physical properties of I) an integrated view of the interface and
implementation models to logical properties its semantics,

othe conceptual model in a consistent n2) information regarding the relationships
of ther between abstractions and their users (from these
manner. relationships come the extensibility rules), and

3) information regarding the provision of
the classes of services and resources available as
well as the exact steps necessary to extend those

! Change control is used to describe a superset services and resources. It is the concept of
of what is usually considered configuration providing precise rules and rigorous controls for
control (Muncaster-Jewell, 1988]. extending an interface set which makes it stable.

9th kAnnual National Conference on Ada Technology 1991 206

crisis", are well-known and will not be
repeated here. An additional problem -- one
which is amplified by existing life cycle
models -- is the arbitrary distinction among

frework the life cycle phases and the inherent
ambiguity of the phases' end points. This

stable interface set section briefly describes the primary
shortcomings of two popular life cycle
paradigms, the waterfall life cycle model and

pl=atform the spiral life cycle model.

The waterfall life cycle model [Royce, 1970]
T => Automated Tool is deficient in its ability to support the

generation of large, complex softwareM => Manual Process systems. Its policy of freezing life cycle
artifacts, such as requirements and design

Figure 1-1. Major Segments of the Conceptual documentation, far in advance of the system
Model delivery date often prevents the creation and

timely delivery of quality products. Figure 2-
1 shows one rendition of a waterfall life cycle

2.0 Overview of Other Life Cycle Models model. Notice that integration concerns are
deferred until after coding. The waterfall life

Existing life cycle models attempt to solve cycle, with its arbitrary life cycle phases,
several life cycle problems, with varying exhibits the "fuzzy end point" problem
success. The issues of maintaining and mentioned above. (In contrast, the Clear Lake
operating systems after acceptance, which are Life Cycle Model emphasizes the processes
largely responsible for the term "software and products of the life cycle rather than

focussing on life cycle phases per se.)

Figure 2-1 Waterfall Life Cycle Model

207 9th Annual National Conference on Ada Technology 1991

The spiral life cycle model [Boehm, 1988], models at and among the levels, throughout
on the other hand, is an approach in which all phases and activities of the life cycle.
artifacts are created and iteratively refined These levels of abstraction are important for
(with the involvement of contractor and client controlling complexity, managing risk, and
personnel) until they have evolved to a point facilitating integration in a manner appropriate
at which they can be baselined. The spiral to each leveL
model is a much more realistic approach to
software engineering than the waterfall model
and is being adopted by some government 3.0 Perspectives Within the Clear Lake Life
organizations. The spiral approach facilitates £y1eMoe
the identification of problems and
discrepancies early in the life cycle, when the There are four top-level agents involved in
cost of repair is far less expensive than it the system development process: the
would be after deployment. Although it may transformation team; the project and
be difficult for clients to accept an approach configuration management (PCM) team; the
in which the majority of funds are allocated safety, reliability, and quality assurance
early in the life cycle, it would be preferable (SR&QA) management team; and the
to the current state of software engineering, automated support environment. Each has a
in which the emphasis shifts from the somewhat different perspective when
delivery of a quality system to the delivery of viewing the system development process,
any system. Figure 2-2 illustrates Boehm's and each perspective must be supported by
spiral life cycle model.

F rCumulative cost

Determine objectives, larePompexsucc Evaluate ltem atives.
anrem ntativesv projeidetdifyd resolve risks

constraint Risk Analysis

CLLCthe praiel fecycle sue of Th.tasfrato temiocendwt

identify, resolve risks

n tegration and n

tOl N atio nal

nPxt-lPv3 Prototyp

Commimental h:ln Proootyps adrssdI
RLM , th evsv i e c lan seofTerSimation esteharkis cne dwt

Patiio Lfclepan Cnept to na ofrneo d ehooy19 0

charged with maintaining the schedules, described in Section 3.0 (although they could
budgets, and staffing plans, and the be seen as representing the automated support
configurations of system components environment's perspective in some sense).
(hardware, software, and operator The following subsections describe the
interfaces). This team must anticipate and conceptual model's four levels of abstraction
deal with the changes that are inevitable in the and the way in which each supports the three
development of a system. The SR&QA teams and the automated support
management team is concerned with verifying environment.
adherence to the process and validating the
artifacts produced by the process. Tests and 4.1 First-Level Abstractions: The Client's
other assurance criteria must be specified and
applied, and the results analyzed by the
SR&QA management team, before an artifact Figure 4-1 shows the top level of the
is moved into the next life cycle phase. CLLCM conceptual model. This level
Automated support eases the manual tasks represents the view of the client desiring that
associated with the other three teams. Each an automated system be produced. This view
of these four agents acts quasi-independently is depicted in terms of the system life cycle
but with knowledge of, and input from, the phases, the contractually required products
others. (represented in the figure by the closed pairs

of double parallel arcs) generated by the
activities within each phase, and the process

4.0 Conceptual Model of the Clear Lake Life by which these products are verified,
Qsk validated, and approved for inclusion in an

evolving system baseline. The ellipse
The Clear Lake Life Cycle Model is described between phases P6, Testing, and P7,
by a conceptual model addressing the Deployment and Operation, is the acceptance
activities of each life cycle phase from the test milestone. This milestone serves as the
four perspectives mentioned in Section 3.0. transition from system development to the
The conceptual model describes the complex maintenance and operation activity, which
interrelationships among life cycle processes consists of iterations of the development
and products - including the relationships phases of tht life cycle. The project object
among processes and the products they share base shown on the right-hand side of the
-- and defines the key properties of these figure supports the development and
products, processes and relationships. The maintenance of the objects that serve as the
model provides a sound basis for leveraging basis for the products, artifacts (non-
reusability. deliverable products created during the

system engineering process), and processes
The CLLCM conceptual model emphasizes involved in software engineering, hardware
well-defined interfaces among and within the engineering, human factors engineering,
semantic models of the processes and operations, and logistics.
products across the life cycle. This emphasis
on "interface engineering" facilitates The first level of abstraction has the flexibility
measurement and refinement of processes to support a waterfall life cycle model for
and products at varying levels of granularity. small, simple, well understood systems, or a
For example, refinement is possible within spiral model for larger, more complex
steps of a methodology (most appropriate for systems. The mapping of this abstraction
small changes between small interfaces) or level onto a waterfall life cycle model is rather
alternate methodologies may be modeled and simple. The transformation activity
executed in parallel for comparison (represented by the rectangles) is concerned
(recommended for large changes between with the generation of a product, the quality
large interfaces separated by many smaller and safety management activity (represented
interfaces), by the circles) deals with the verification of

the process and validation of the product, and
The conceptual model of the CLLCM is the project and configuration management
characterized by four levels of abstraction that activity (represented by the pentagons)
reflect the views of the client, technical and determines, upon receipt of a
management personnel, library management, recommendation from the quality and safety
and object management. It is coincidental management team, whether a product is to be
tha there are four levels of abstraction -- they accepted as a new member of the system
do not map directly to the four perspectives baseline.

209 9th Annual National Conference on Ada Technology 1991

CAC

C E

EE
C/)9

Z > E % o

=. --. r! Is.* to 'm '0

0~: ---- ----- --- --

C-4 -4 a * 0-

Cl) ~ C _-
.--------------

--------- S

0)0

c r
o c0

-- - - - -- - - - -
.0 a.

-0 ca.2L

0.. a ,

%C4.

9t AnulNtoaofrneo d ehooy19 1

The mapping of the top abstraction level onto technical personnel who work with the life
a spiral life cycle model must address the cycle support environment.
additional activities included within the
phases of the spiral life cycle. The Two additional icons have been added at the
transformation activity includes not only the second level of abstraction. The diamond
generation of a product but the prototyping, represents relationships between entities on
simulation and modeling required to refine either side, where the entities represent
the product. The project and configuration processes, products, and artifacts. The closed
management activity includes, in addition to pair of single parallel arcs represents artifacts
baseline decisions, planning for subsequent which are needed within the environment but
phases and analysis of the risk involved with which are not contractually required (e.g.,
baselining or not baselining a life cycle informal documents, checklists,
product. questionnaires, interview transcripts, etc.).

Each of the entities and relationships has
The client's view is only a portion of the total attributes (properties) which provide
view that must be held by key members of information that must be preserved by the
the three teams and the automated environment and its users. For example, an
environment that supports them. (This point entity attribute may indicate that a product
will be amplified in Section 4.2, which contains classified information. An attribute
describes the second level of abstraction.) on the relationship between the classified
The client's view is concerned with product and a client representative may
preserving a sense of the work flow as restrict the representative from providing
viewed by the client (as opposed to, say, the information regarding the product from any
transformation team's sense of the work place other than a secure processing site.
flow, which may be quite different). For any
subcomponent of the work to be done, in any The sets of entities and relationships and their
phase, the model assumes that the preceding attributes comprise a semantic model in
phase has produced a baselined product to entity-attribute/relationship-attribute (EA/RA)
serve as an input stimulus for the form. This semantic model shows the
transformation team. The response of this organization of the major processes and
team is to produce an output artifact that is products of the system life cycle and the
closer to the eventual form of the relationships between them as well as the
subcomponent. The subcomponent is important properties of the processes,
intended to be integrated with other products, and relationships.
components and subcomponents, in order to
pass acceptance testing and be deployed as The reader should note that Figure 4-2 is far
part of the operational system. The SR&QA from complete. For example, as illustrated in
management team ensures that the output the lower left corner of the figure, each
product and the process that produced it process icon can be decomposed into a
comply with project policies and standards. collection of icons. These icons represent
Members of the PCM team consider issues of approved methods, standards, tools, roles,
budget, schedule, risk, and other implications etc. The methods may be further
for planning adjustments, before making decomposed into steps and, in turn, into
decisions to advance the baseline for the templates for achieving the desired results of
subcomponent and other subcomponents and the steps. In keeping with the recursive
components in that phase. nature shown in the figure, each step or

activity is stimulated by a product that
4.2 Second-Level Abstractions: Management represents the interface to the previous step
and Technical Views (or activity). The recursive nature of the

process permits the measurement and
Whereas the CLLCM conceptual model's refinement discussed earlier in this section.
first level of abstraction describes what is
taking place during the system life cycle from Another item of interest is that, within the
the viewpoint of the client, the second level second level of abstraction, each phase of the
of abstraction describes what happens system life cycle from Requirements, P2,
"behind the scenes" in order to support the through Testing, P6, consists of a software
client's view. Figure 4- 2 depicts the second activity, a hardware activity, and an
level of abstraction. This level expands the operational interface activity. Each of these
information present in the first level in order activities is staggered in time: in a given life
to reflect the needs of the management and cycle phase, the software transformation team

211 9th Annual National Conference on Ada Technology 1991

0

00

0.

CYC

CLC

C
CY 40

ILD

Cti

CO))

Z Em
0 0O

00

I C

zS

U Un

9th Annual Notional Conference on Ado Technology 1991 212

generates a product which is reviewed by the Services (NCS) object (Virtual File Store
hardware transformation team, who then (VFS), Virtual Terminal (VT), and
generate a hardware product supporting the Manufacturer's Automated Protocol (MAP))
software product. The operational interface is described by a semantic model showing the
transformation team acquires access to both objects within the component and how those
the software and hardware products and objects are integrated to form the component.
generates an interface product, which then The entities in the semantic models are copies
serves as the user interface to the software of primary entities. The relationships between
and hardware services. This multiple activity the primary entity copies and the originals
model provides a separation of concerns indicate the use of the actual objects within
among the software, hardware and interface the components in which they are referenced
aspects of a system, facilitating change (e.g., instantiation parameters for a generic
control by minimizing the effect that a change Ada package object). The primary entity
to one aspect of the system can have on the copies are used to select and instantiate the
other two aspects. The model also objects needed to build the components
emphasizes the required interactions and within the Network Communications
agreements that must be negotiated and Services and, subsequently, the NCS itself.
enforced among the teams responsible for
these three interdependent activities. The library and component management

model also facilitates the configuration
4.3 Third-Level Abstractions: Library and management of objects and object
Com~nentManagement configurations. Each of the library

configurations in Figure 4-3 (the reusable
The CLLCM conceptual model's third level component library, the NCS and its
of abstraction describes how the life cycle components) is referred to as a stable
products shown in the first level of framework (abbreviated as SF in the figure).
abstraction are organized for library A stable framework serves as a configuration
management of components, views, and management tool which shows exactly which
configurations. This level is depicted in objects are under baseline control within a
Figure 4-3. The upper right corner of the component at a given point in time. Thus,
figure shows a collection of actual objects. stable frameworks and their associated
An actual object, such as Al I 1 in the figure, semantic models provide the capability to
could be any persistent object such as a assess the impact of adding, modifying or
component of a requirements document, a removing objects from stable components.
component of a design document, a schedule,
a memo or an Ada generic package. Each 4.4 Fourth-Level Abstractions: Object
actual object is associated with a unique Managent
primary entity upon creation; this primary
entity contains name and type information The fourth level of abstraction of the Clear
concerning the actual object, and it is Lake Life Cycle Model, depicted by Figure 4-
replicated in each library in which its actual 4, describes an underlying representation of
object is needed. The attributes of the an object. This representation supports the
relationship between a primary entity and a management of issues such as component
copy of the primary entity describe the use of variations, revisions, releases, associated test
the corresponding actual object in the library sets and design rationale. The semantics of
in which the primary entity copy exists, the representation are capable of capturing

models of sets of information, associated
The upper left corner of Figure 4-3 shows behaviors, and their interfaces across all
how the third level of abstraction facilitates activities and phases of the life cycle.
component reuse. The library of reusable
components is described by a semantic model At this fourth level of abstraction, an object is
in which the entities are primary entities defined as a collection of entities connected
referencing actual objects and the by relationships. The entities represent object
relationships establish a classification scheme constituents such as public interfaces,
for objects in the reuse taxonomy. bindings to runtime environments (also

known as private interfaces),
The bottom half of Figure 4-3 shows how the implementations, interface and
library and component management model implementation test sets, and rationale
supports the generation of subsystems. Each information.
component of the Network Communications

213 9th Annual National Conference on Ada Technology 1991

00a

C6 C

0; 0

9th nnul Ntioal Cnfeenc onAda echoloy 191 1

UA

000.0

00

L,,

_________mm

C *0

IL z

-10-

UA!
215 th nnua Naionl Cofernce n Aa Tchnoogy199

An object is referenced by a primary entity, constrained by configuration objects,
as discussed in Section 4.3. The primary allowing them to be associated with predicate
entity serves as the root of a path name which tests that activate triggers or daemons to
uniquely identifies the individual parts of an enforce policies and help control processes
object. For example, a path name such as: within the project development environment.

Such configuration objects represent an
All l.Public_AIS.Private.AIS(Variationl). implementation of the second level of
Implementation(Variation.2, Revision_2, abstraction. An additional object that restricts
Releasel) visibility and determines access rights is

stored as a view object. For example, the
might represent the second revision of an implementation of the first level of abstraction
implementation variation of object A111 is represented as a view object that enforces
which supplies software to emulate floating the client's perspective of the realities stored
point hardware, bound by a private interface at the second level of abstraction.
specification referencing the runtime
environment of the host system
(Variation_l). Release_1 signifies that this 5.0 Risk Assessment and Management
revision (2) was the first one released for use
in configuration with other objects. The Risk is associated with decisions and the
fourth level of abstraction supports multiple interrelationships among those decisions.
variations and revisions by allowing more The activities of assessing, planning and
than one private interface specification to be managing risk are intrinsic to system
related to a public interface specification and development. Not all risks can be avoided,
more than one implementation to be rMated to but they all should be assessed and explicit
a private interface specification. controls should be applied in proportion to

each risk. The assessment of risk should
These schema-level abstractions of the lead to confinement of any identified risk so
structure of objects support variable levels of that it is isolated from the other phases of
granularity for the different views of life development, to the maximum extent
cycle activities and phases. Tools that require possible. For each risk that has been
only a coarse granularity of representation identified and assessed, a management plan
(such as those conforming to the CAIS-A that reflects the explicit controls assigned to
model) need not be aw -cffiner granularity that risk should be developed. The
representations, yet tools designed to exploit assessment and control of risk should be
finer granularity set antics may do so. This iterated for each risk until the risk level has
support for variable granularity views of been reduced to a point at which it is within
commonly sa'uctured objects (e.g., tools, an acceptable threshold.
artifacts, teams, schedules, processes, etc.)
provides a unifying paradigm with many A system life cycle model should incorporate
accruing benefits throughout the life cycle, and support the assessment and management

of risk throughout the life cycle. An
All objects, views, configurations, and approach based on Parnas' scheme of
libraries are actually stored as persistent decomposing a problem space into non-
objects in the form of the fourth level of overlapping segments is ideally suited for
abstraction. Some objects are considered to handling risk. With such an approach, a
be leaf-level objects; examples include an Ada known risk can be confined to a single
generic package, a role within a team segment that is made as small and self-
organization, or any other object that is to be contained as possible -- that is, it is
treated as a single building block with no encapsulated by well-defined interfaces and
need for subsequent decomposition by the reduced to its essence. Limiting an area of
user. Another type of object to be stored at risk facilitates the isolation of the risk from
the four.h level may be one that contains a the rest of the problem space, the
directed graph depicting a collection of identification of the risk to program
building block level objects and their management, and the assignment of a suitable
relationships to one another in a given team to address the risk and to repeat the
configuration. Such directed graph objects steps of the assessment and control process
represent implementations at the third level of to reduce the level of risk. Figure 5-1 depicts
abstraction. The attributes of the objects and the problem space within the environment
their relationships within a given and the segmentation of that problem in order
configuration can be appropriately to address risk. To further facilitate risk

9th Annual National Conference on Ada Technology 1991 216

Th7e Problem Space The Partitioned Problem Space

areal sk

Figure 5-1 Partitioning the Problem Space

management, careful attention should be revisited. Also, different segments (and their
given to the semantic support needed by the increments of evolution) may proceed
four major perspectives of the life cycle (as through the phases at different times.
enumerated in Section 3.0). The flexibility of the CLLCM allows it to be

5.1 Potential Risks Associated With Use ot used in ways that are more risk-directed than
th CLLCM the waterfall. The CLLCM is intended to

address risk by identifying, evaluating, and
The risks involved with introducing new mitigating risk at each step. In order to
technology into large projects are numerous mitigate risk in all phases, the model is
and critical. It is, therefore, necessary to intended to provide feedback. Feedback can
evaluate the ways in which the model come from any phase into any other phase
addresses risk as well as the specific risks and is moderated through the object base, as
introduced by the model. Where possible, depicted in Figure 4-1. The return arrow,
the means for mitigating specific risks should near the top of Figure 4-1, indicates that as
be determined as well. results of further phases are entered into the

object base, feedback may indicate the need
The major risks posed by the CLLCM model to revisit previous phases. As an example,
include the possibility that it could be information gained through prototyping may
assumed to implement only a "waterfall" life update the assumptions upon which the
cycle process, the lack of extensive project requirements were predicated, resulting in a
experience in using the model, the need for change to the requirements artifacts (which
automation of the processes within the would then ripple through succeeding
model, and the need for appropriate library phases).
and object management technology to support
the model. This section addresses the Lack of Large Proiect Experience: In order to
specific risks of using the model and, where assess the applicability of a model to a
known, suggested mitigating measures. project, it is often useful to compare the

results of similar projects using the same
"Waterfall" ARearance: One risk of the model. Unfortunately, the opportunity to
Clear Lake Life Cycle Model arises from its assess the full model has not been presented,
resemblance to a traditional waterfall model. due to the fact that the projects using the
Even though the CLLCM diagram appears to model are long-term projects that are still in
depict a waterfall life cycle and can be used in the early phases. The current use of the
that manner for simple projects, it is not model by complex projects with long
limited to that paradigm. The activities of the lifespans will increase the knowledge about
waterfall life cycle model are used as the the model. As information from those
phases of the model because they characterize projects accumulates, it is hoped that
the basic activities involved in the improvements to the model will become
development of any system. Although the evident.
phases are delineated by deliverables, that
does not signify that a given phase will not be Need for Appropriate Automation: The

fallibility of manual processes presents a

217 9th Annual Notional Conference on Ado Technology 1991

major risk to systems developed using the current COTS products, the model requires a
CLLCM. Semantic modeling (in an EA/RA means for transitioning from other models
form) should be improved to provide the supporting various notations.
capability to precisely represent processes.
Precise process representation would be the Need for Sophisticated Object and Library
basis for the generation of automated tools to Management Capabilities: Essential to the
perform life cycle processes. The lack of implementation of the model is the ability to
commercial off-the-shelf (COTS) software manage individual objects and configurations
products to support the CLLCM raises two of objects. The object and library
issues. First, the lack of COTS and industry management requirements of the CLLCM are
standard interfaces across the life cycle based upon the different needs and roles of
necessitates the use of manual processes and technical and management team members. A
custom extensions in some areas. Second, discipline must be imposed on the
the differences between the principles and development, maintenance, and retirement of
concepts upon which the CLLCM is based objects as well as on the integration of objects
and those which serve (or fail to serve) as the into subsystems which, in turn, are integrated
basis for most current COTS software to form systems. A means must also be
products and interface models (e.g., Portable provided to facilitate the selection and
Operating System Interface for Computer classification of reusable objects.
Environments [POSIX, 1988]), highlight the Unfortunately, no commercial tools have
unique perspective of, and extensive support been developed to comprehensively address
inherent in, the CLLCM. these requirements. Potential candidates

which provide an appropriate basis for
Several COTS products and interfaces are understanding and evolving object
currently amenable to tailoring. The issue management concepts include Rational's
that arises when adapting products and development environment and Honeywell's
interfaces is that others may not adapt a Gaia [Vines, 1988]. Semantic modeling in
product or interface in the same way, limiting entity attribute/relationship attribute (EA/RA)
commonality and its related benefits. The form is effective in representing important
Hierarchical Object-Oriented Design (HOOD) information pertaining to objects and the roles
method, which is being used by the European objects play within systems and reuse
Space Agency, shows promise as a basis for taxonomies. EA/RA semantic models are
adaptation of a design method [CLAD, equally effective in representing the
1990]. As stated earlier, the CAIS-A is being macroscopic issues of systems and system
used (and extended) to provide a standard life cycle support environments, as well as
interface. The current plan for evolution of the microscopic issues of internal object
the CAIS model consists of merging it with structures. The American National Standards
the Portable Common Tool Environment Institute (ANSI) and the Federal Information
(PCTE) effort, resulting in a Portable Processing System (FIPS) Information
Common Interface Set (PCIS) [PCIS, 1990]. Resources Dictionary System (IRDS)
In terms of tools and interfaces specifically standard provide capabilities for EA/RA
conforming to the requirements of the modeling. At the current time, there are still
CLLCM, it is hoped that the NIST standard several other organizations supporting
reference model will have a clean mapping to significant changes to the IRDS. For
the CLLCM and will create the necessary example, the International Standards
impetus for vendors to create COTS tools Organization (ISO) proposal removes the
which automate the processes supported by attributes from relationships, which would
the model. In an analogous manner it is render it significantly less useful. The ability
hoped that interface standards that support the to create and manage semantic models in
NIST life cycle reference model will emerge. EA/RA form is critical to achieving the

maximum potential of the CLLCM. The
The reliability, integration, and extensibility ANSI/FIPS IRDS standard provides a good
requirements of the CLLCM go well beyond starting point.
those addressed by most current COTS
software products. The investment in A library management system, with the
evaluating, procuring, and training for support of an object management system,
current products may be of little use in the serves as a repository of systems, tools and
context of the Clear Lake Life Cycle Model. resources and the semantic models describing
In order to minimize the risks associated with the structure of these systems, tools and
the loss of information generated using resources, along with their interfaces. Users

9th Annual National Conference on Ado Technology 1991 218

working in a system life cycle support expressive models, described by EA/RA
environment will require systems, tools and notation and developed with an object-based
resources in order to perform their duties. A discipline. Another principle that the
means must be provided to keep a user with a CLLCM uses to extend the current model into
specific role from accessing those aspects of the future is through the leveraging of
a system, tool, or resource that are extensible interfaces (see footnote on stable
inappropriate for the role. A library interface sets). Whereas much current
management system supporting the concept standardization is based on taking a common
of views is needed to provide support in an denominator of popular tools (i.e., what is
automated manner. Library management of available) or interfaces (e.g., POSIX), the
objects and configurations with fine-grained CLLCM is based on the actual requirements
representations has not been available in of large projects. The CLLCM can also be
commercial products (at least not described in scaled down to accommodate small projects.
publications of which the authors are aware). A key to accommodating change is to
One currently available prototype product, recognize the necessity for change within the
supporting a fine-grained object projects as they proceed through the life
representation, is the Software Life Cycle cycle. To do this, the CLLCM addresses the
Support Environment (SLCSE) [Strelich, "non-functional" requirements for systems,
1990]. such as flexibility, extensibility, and

maintainability, as well as the functional
By continuing to assess, plan for, and requirements for the system. The
manage the risks associated with the model, it extensibility of the CLLCM acknowledges
is hoped that known risks can be addressed the need to change in a planned and well-
and minimized in future refinements, managed manner. The CLLCM attempts to
Through the combined efforts of various be "the right tool for the job" as well as the
projects, it is hoped that the leading edges of right tool for future projects.
technology can be merged into solutions
appropriate to support the kinds of projects 6.2 IntegLated Approach Across the Life
that are the focus of the CLLCM.

The use of precise models based on well-
6.0 Benefits of the Model founded principles and concepts facilitates

accommodation of significantly more
The benefits of a common life cycle model, descriptive information capture. The
whether the standard is among divisions of a semantic models can be used not only to
corporation, contractors for an agency or describe the design choices made on the
corporations within an industry, are obvious, projects supported by the life cycle but also
They derive from use and support, which are the choices that were rejected (along with the
outside the scope of this paper. The potential rationale). The capture of additional
impact of wide acceptance of a standard life information may enable later introduction of
cycle reference model based on the CLLCM methods or tools that may not have been
will not be discussed here, as it is also practical (or in existence) at an earlier point in
beyond the scope of the paper to mandate a the life cycle. The use of baselines in the
standard or enforce its acceptance. The object base allows the phases and activities to
benefits that will be discussed include the share common information rather than
ability of the model to adjust to changes in replicate information to accommodate
technology, the integration of all life cycle different formats. The ability to share
activities, and the incorporation of integration information increases the total information
and change control concerns into the process. available to each activity and reduces version

skew problems inherent in systems that
6.1 Ability to Adjust to Changes in maintain redundant data. It also reduces the
Terrors inherent in manual re-entry of data.

The CLLCM has been designed not only to The CLLCM approach is different from many
be tailorable to the wide variety of system current approaches that attempt to "cobble
developments being undertaken at the current together" non-integrated COTS products (that
time but to address the rapidly changing are usually not based on precise models) and
nature of technology and methodologies, then attempt to format data for use by other
The facility with which the CLLCM handles COTS products. Rather than developing an
change derives from its use of powerful environment in which COTS products may

219 9th Annual National Conference on Ada Technology 1991

be rendered obsolete by changes to a method (i.e., users can study the implications of the
(or by introduction of a new or additional proposed baseline and plan accordingly) as
method), the semantic models of the CLLCM well as the possibility of regressing back to
provide the opportunity to generate a new the previous baseline (if problems arise after
instance of a tool. The generated tool can be the new baseline becomes operational). This
amenable not only to the existing information capability is a critical need of large projects
(which has been captured in the project developed on an incremental basis. Change
baseline) but also to the new information management is facilitated by capturing all
particul&, to the changed (new or added) information relevant to each release within the
method. In this way, system developers are object base. By using the baseline to manage
never faced with the choice of continuing the increments of integration and the
with less than adequate tools or enduring a information relevant to change management,
significant discontinuity in productivity as the two activities are reconciled in a
current artifacts are brought up to the new cooperative manner.
method.

The concept of stability (as in stable interface
6.3 Process Incorporates Integration and sets) also aids integration and change
£iigc Conto management. As stated in Section 4.3, the

semantic models associated with stable
All activities of system development are frameworks allow the impact of integration
addressed in all phases of the CLLCM. This and change to be assessed before an actual
is different from most life cycle processes change takes place. In this way, areas of
that deal directly with development but do not concern can be revealed and scheduled for
specify the points at which software quality additional effort (which might be in the form
assurance, change management, project of prototyping) in order to smooth the
management or integration enter into the process of integration. The concept of
process. The framework concept inherent in stability (i.e., systematic and documented
the CLLCM supports the life cycle methods for extending the capabilities or
management of integration and change responsibilities within the provided
control. Figure 4-1 shows the interactions of perspectives) provides a well-ordered
the project and configuration management migration path. It is hoped that the benefits of
and the quality assurance organization with the model (and its improvements) will lead to
every artifact produced throughout the life wide acceptance and support by the systems
cycle. Because the semantic models of the engineering community. It is intended that
object base describe processes and interfaces the model be simple enough to reason about
as well as artifacts, tailored models of the but that it support enough complexity to
first and second levels of abstraction (Figures handle current and future system
4-1 and 4-2) will be an important part of each developments. Success will be measured in
project's baseline. Specifically, these models terms of the number of implementations of
will be used for active control of the manual the Clear Lake Life Cycle Model that can
and automated processes throughout the life meet those challenges.
cycle.

The seemingly contrary nature of the 7.0 Concluding Remarks
concepts of integration and change control
present a significant challenge to development The dynamic and unpredictable nature of
of a cohesive model. Whereas integration system technology and methodology
strives to foster similarity, change control advances has resulted in the need to handle
manages dissimilarities. Not only must the increasing complexity when dealing with
model be able to integrate artifacts (in system development projects. When the
potentially different forms than originally project complexity is coupled with the
envisioned) as the life cycle proceeds but it complexity of the systems to be developed,
must also be able to manage the various ad hoc methods will almost certainly fail.
changes (e.g., configurations, requirements, Precise models that can be described in a
and staff) that occur throughout the life cycle semantically unambiguous manner are needed
for a system. Management of objects in the to describe the system, the life cycle
object base according to baselines in each environment, and the interactions between the
phase eases integration. When a new system and its life cycle.
baseline is introduced, it can be done in a
manner that allows a period of changeover

9th Annual National Conference on Ada Technology 1991 220

The requirements for software systems, Acknowledgements
especially in the domains of defense,
aviation, and space applications, are The Clear Lake Life Cycle Model for System
becoming more critical. Software contractors Engineering was created, communicated, and
are being asked to deliver systems that are motivated by teams led by Dr. Charles
large, distributed, real-time, continuous McKay, Director of the NASA Software
(experiencing little, if any, down time), and Engineering Research Center and the High
able to support extensibility and tolerate Technologies Laboratory at the University of
faults. However, life cycle models have Houston - Clear Lake. The authors of this
typically applied to small and simple systems. document acknowledge the participation of
Many such models cannot be scaled up to many researchers in the refinement of this
handle more complicated applications. On model. Special thanks are due to Charlotte
the other hand, it is easier to scale down a Wilford whose editing substantially improved
software engineering life cycle model geared the readability of this paper.
toward large, complex systems to meet the
requirements of simpler applications. All errors of commission and omission are
Therefore, life cycle models intended to help solely the responsibility of the authors.
resolve the "software crisis" must address the
high end of software complexity by
leveraging advancements in theoretical References
foundations as well as the corresponding
technologies. [Booch, 19871 Booch, G., Software

Components with Ada, Benjamin/Cummings
The activities of the life cycle, from concept Publishing Company Inc., Menlo Park,
exploration through maintenance and California, 1987.
operation to retirement, provide a framework
that incorporates software engineering at each [Boehm, 1988] Boehm, Barry, "A Spiral
step. The Clear Lake Life Cycle Model is Model of Software Development and
also amenable to various organizations, Enhancement", IEEE Computer, May 1988,
although an iterative process may be the most pp. 61-72.
compatible with the principles of software
engineering. The CLLCM is an emerging life [Boehm, 1989] Boehm, B., Software Risk
cycle model that is being evaluated for use by Management, IEEE Computer Society Press,
a number of organizations and will benefit 1989.
from the use and by the findings of those
organizations. The use of well-engineered, [Burns, 1989] Burns, A. and C. McKay, "A
emerging standards is intended to leverage Portable Common Execution Environment
expertise of other groups, in order to speed for Ada", Ada: The Design Choice -
acceptance and automation of the CLLCM. Proceedings of the Ada-Europe International
The risk-directed focus on substantial, Conference, Madrid, 1989, Cambridge
complicated systems, developed in an University Press, 1989.
incremental manner over a protracted period
of time, attempts to tackle the most difficult [HOOD, 1989] HOOD Reference Manual,
system requirements. The attention to Issue 3.0, WME/89-173/JB, September
integration and change management 1989.
distinguishes the CLLCM from other models.
By addressing the most difficult systems [POSIX, 1988] IEEE Standard Portable
using a tailorable strategy, CLLCM can also Operating System Interface for Computer
be used for less complex systems. The life Environments, IEEE Std 1003.1-1988,
cycle approach is intended to be explored, Institute of Electrical and Electronics
evolved, and refined to address the life cycle Engineers, 30 September 1988.
issues of an incrementally evolving project,
incorporating new technologies and new [LMSC, 1989] Lockheed Missiles and Space
methodologies over a significant period of Corporation (LMSC) NASA Software
time. Support Environment (SSE) DRLI 58, SSE

Architecture Design Document, November
1989.

[McKay, 1988] McKay, Charles W.,
"Conceptual and Implementation Models

221 9th Annual National Conference on Ada Technology 1991

Which Support Life Cycle Reusability of About the Authors
Processes and Products in Computer
Systems and Software Engineering", RICIS Kathy Rogers is a Member of the Technical
Research Report for AIRMICS, AIRMICS- Staff at the MITRE Corporation in Houston,
HTL Grant 2-5-51537, 1988. Texas. She has over eight years of

experience developing software systems.
[CAIS-A, 1989] Military Standard Common Her recent responsibilities have been in the
APSE Interface Set (CAIS) DOD-STD- evaluation of Ada and software engineering
1838A, 6 April 1989. methods, processes, and products for the

NASA Space Station Freedom program. She
[McKay, 1989] McKay, Charles W., "Some received a B. S. in Computer Science and a
Notes on Risk Management", 1989. B. A. in Economics from the University of

California at Irvine in 1982. She is currently
[Muncaster-Jewell, 1988] Muncaster-Jewell, working toward an M. S. in Computer
Penny, "Change Management Needs for Science at the University of Houston at Clear
Persistent Data Bases (PDDs)", Proceedings Lake. Ms. Rogers is a member of the IEEE,
of the Third Annual Knowledge Based ACM, and National Special Interest Group in
Software Assistant (KEBSA) Conference, Ada (SIGAda) and was the Chair of the Clear
August 1988. Lake Area (Houston) chapter of the SIGAda

in 1988 and 1990.
[Parnas, 1972] Parnas, David L., "On the
Criteria To be Used in Decomposing Systems Michael Bishop received the B.S. degree in
into Modules", Communications of the computer science from the University of
ACM, Vol. 15, No. 12, December 1972, pp. Houston in 1984. He is currently working
1053-1058. toward the M.S. degree in computer science

at the University of Houston at Clear Lake
[CLAD, 1990] Reference Manual for the with a research emphasis in semantic
Clear Lake Approach to Design (CLAD), modeling. Mr. Bishop has over six years of
Version 1.0, Software Engineering Research experience as a software engineer working in
Center at the University of Houston at Clear aerospace applications. He is currently a
Lake, 22 January 1990. Senior Software Engineer at Unisys. Mr.

Bishop is a member of the Association of
[Royce, 1970] Royce, W. "Managing the Computing Machinery, the IEEE Computer
Development of Large Software Systems: Society, and the National SIGAda.
Concepts and Techniques", Proceedings of
Wescon, August 1970. Dr. Charles W. McKay is the founding

director of the NASA-chartered Software
[PCIS, 1990] Solomond, J., "Letter from the Engineering Research Center (SERC) and the
Director, Ada Joint Program Office", Ada Texas Higher Education and University of
Information Clearinghouse Newsletter, Vol. Houston -chartered High Technologies
VIII, No. 1, March 1990, p. 1. Laboratory (HTL). The SERC provides

focused research to advance technology in
[Strelich, 1990] Strelich, T., "Software Life computer systems and software. Dr. McKay
Cycle Support Environment", General is the Team Leader and Principal Investigator
Research Corporation, RADC-TR-89-385, on the Portable Common Execution
February, 1990. Environment (PCEE) project, the University

of Houston at Clear Lake (UHCL) Technical
[Vines, 1988] Vines, D. and T. King, "Gaia: Director of the AdaNET project, a Technical
An Object-Oriented Framework for an Ada Advisor for the Boeing STARS team, and
Environment", Proceedings of the Third Chair of the Ada Runtime Environment
International IEEE Conference on Ada Working Group (ARTEWG) subgroup
Applications and Environments, May 1988, responsible for the Catalog of Interface
pp. 81-90. Features and Options (CIFO). Dr. McKay

has more than 20 years of experience in
research, development, and teaching of
computer automated systems. He is the
author of three textbooks, numerous articles
and reports, and numerous video taped
lectures and courses.

9th Annual National Conference on Ada Technology 1991 222

QUALITY ASSURANCE REQUIREMENTS FOR AN
EVOLUTIONARY DEVELOPMENT METHODOLOGY

Richard M. Lobsitz, Peter G. Clark, and C. Robert String

TASC
Reading, Massachusetts

Abstract. Evolutionary development models offer greater flexi- Ouality Assurance in the Waterfall Model
bility in setting system requirements than standard waterfall
models. However, without innovative quality assurancepractic. The waterfall model of software development proceeds by
es, the software development process can degrade to an uncon- means of an orderly sequence of transformations from require-
trolled, poorly tested state. This paper discusses issues unique to ments to design to code, in linear order. The software system
evolutionarymodelsintheareasofrequirementsbaselines, con- being built is defined in increasingly greater detail as it prog-
figuration management, and certifying operational readiness. A resses through the model's life cycle phases. Advancement to
quality assurance program to support our TASC-EDGE M the next phase is dependent on finalizing (freezing) and approv-
(Effective Development through Growth and Evolution) devel- ing the results of the previous phase. The final product is soft-
opment methodology addresses these issues. The model is ware that implements the requirements defined and frozen in the
designed to manage the risk associated with poorly defined earliest phases.
requirements orrequirements that emerge from the use of fielded In the waterfall model, the fundamental assumption is the
systems rather than exist apriori. This paper describes the quali- requirements "as-specified" at the end of the requirements
ty assurance guidelines which define a complete set of reviews, analysis phase are near6' identical to the users' real require-
documentation, and testing milestones for the TASC-EDGE ments. As a consequence of this assumption, the goal of the QA
software development life cycle. These guidelines structure the program is to verify and validate (V&V) the system under test
evolutionary development so that the system is allowed to against the as-specified requirements. The system testing is
evolve with control over the scope and timing of changes to the designed to identify any "shortfall" between the system under
requirements. The TASC-EDGE life cycle recognizes that qual- test and the as-specified requirements and, to a lesser extent, the
ity assurance is based on a combination of verification activities "gold plate" where the system under test exceeds the as-speci-
that demonstrate system conformance to specifications, and val- fled requirements. The QA process in the waterfall model
idation/evaluation activities that assure that the system meets emphasizes closure of each phase and a sense of finality to the
users' real requirements. end-product; the system is declared "finished."

INTRODUCTIQN Figure 1 shows what happens during system testing (ta)

The software industry has defined various models of develop- when the users' real requirements (An) are not identical to the
ment life cycles. Two models have gained notable popularity: as-specified requirements (Ao). The reasons for this require-
the classic "stepwise refinement" life cycle (often referred to as ments mismatch are discussed by Brooks (Brooks. 1987) and
the "waterfall model") and the evolutionary or incremental others. However, in the waterfall model, there is strong resis-
release model. Both models strive to develop a usable software tance by all parties against restating requirements for a number
product, but each hasa different quality assurance(QA)process of reasons. First, it is not the V&V organization's job to restate
that affects thefinal quality of the software. They begin with dif- requirements. Their job is to point out differences between the
ferent assumptions, have different goals, and yield different system under test (B) and the as-specified requirements. Sec-
results. ond, the developers usually don't know enough to determine

whether the system under test should be modified or a require-
This paper first reviews the QA assumptions, goals, and ment should be changed and, since changing a requirement may

resultsofthe waterfall model. Afterbriefly describing the evolu- have far-reaching consequences, they opt to modify the system
tionary software development model, the QA assumptions, under test. Finally, the buyers, and possibly users, don't want to
goals, and results of the evolutionary model are discussed. Next, appear foolish by now changing the requirements that they had
we describe some of the issues that are unique to the evolutionary previously accepted.
development model. The paper goes on to discuss all of the
phases in the TASC-EDGE life cycle and the associated quality When the real users finally get the system it is apparent thatasurnc atiiie. e onluewith a brief summary. the true gold plate is different from the gold plate identified by
assurance activities. We conclude wthe QA process. It may, in fact, extend into areas that were pre-

viously thought to be shortfalls. In addition, there is a real short-
fall in the areas not addressed by either the as-specified
requirements or the system under test. Furthermore, the situa-

' TASC-EDGE is a trademark of The Analytic Sciences tion rapidly deteriorates as the mismatch between the as-speci-
Corporation fled requirements and the users' real requirements increases.

223 9th Annual National Conference on Ado Technology 1991

0-21)10

Ilu AoI te le' o~
I I ~ Ley~p~eeene meitm___

LJ Ig
L J

B b Validted Ageiet AG
Wu A. Is the Ueete' Ree

Figure I Typical Waterfall Model QA Results

The net result is that the developers spend valuable time and system. Each cycle begins with the Systems Concept and Deft.
money after test making the system meet as-specified require- nition activity. Here, the users and developers (re)baseline the
ments that may not be real, while totally ignoring unspecified system requirements and (re)set implementation priorities. This
areas that may be critical to the real users. Nobody has really activity should be of relatively short duration and detailed anal-
learned anything about the users' real requirements from the ysis should be confined to what is being planned for the next
process, nor have they been required to do so by the process. increment. Thereafter, requirements are drawn out of the users

by letting them evaluate already delivered capabilities. Once an
The Evolutionary Model increment baseline is established that reflects the priorities of

the users and buyer, a Time-Box Development activity begins.
TASC's Effective Development through Growth and Evolution The time-box concept establishes a fixed schedule and budget
(TASC-EDGE) model addresses the requirements uncertainty for the developers, but allows flexibility in the content of the
problem by using a "natural growth" model which starts with a delivered product (on the condition that the high priority func-
high level view of the eventual product and extends and refines tions are completed first). When the time-box development is
its capabilities at regular intervals in response to user feedback finished, any unimplemented, low priority functions are reprio-
on emerging deployed capability until the final product is ritized in the next cycle.
achieved. This is accomplished by combining classical life
cycle activities into iterative enhancement at the development System Operation allows the users to experience the sys-
level. TASC-EDGE has evolved from our extensive experience tem in action and the developers to collect statistics and User
in developing large information systems for our Government Feedback. System performance is monitored and tracked for
customers. It began as an attempt to effectively address the evaluation. Finally, requested changes, usage statistics, per-
observed weaknesses of software development standards such formance statistics, specifications of deferred functions, and
as DoD-STD-7935A, DoD-STD-2167A, and DoD-STD-2168. new system requirements are collected and analyzed to estab-
It also uses ideas adapted from the work at the Software Engi- lish a new baseline (agreed to by all parties) for the next devel-
neering Institute (SEI) on software development process models opment cycle. (Clark, 1989)
and other advanced software concepts. It is a combination and Prototypes are used throughout the process to support the
extension of Boehm's spiral model (Boehm, 1986) and Martin's definition of the system concept, to elicit and refine detailed
Time-Box development approach (Martin, J., 1986). It incorpo- requirements, and to do performance estimation. These proto-
rates structured and prototype-based development techniques to types aid in demonstrating the interfaces of the system to re-
achieve maximum customer satisfaction within the constraints lated, external systems, identifying high level functionality and
of the project schedule and budget. These techniques promote response time requirements for the system, and gauging data
greater flexibility to cope with the dynamic nature of advancing volume and throughput. This is often done by simulating the
technology and the continual change in most end-users' envi- user interface of the system to identify not only user interface
ronments and roles within their own organizations. requirements, but functional and performance requirements as

well. Operational prototypes are the building blocks on which
TASC-EDGE sets up a top-level evolutionary plan and pro- the system is grown. Here we quickly build the increment by

duces the system in several increments, allowing feedback from integrating commercial, off-the-shelf (COTS) tools (e.g.,
the users todirectthe development. The basic design philosophy database management systems or spreadsheet) and reusable
behind evolving a system at TASC is to layer complexity into the components with custom-built 4GL and 3GL modules which
system. This means starting with a simple implementation of a are either automatically generated from front-end computer
requirement and adding complexity in subsequent increments aided software engineering (CASE) tools or coded and tested by
after the basic capability has been completed. The methodology hand using current language-sensitive editors, compilers, and
is constructed so that the competing factors of schedule, budget, debuggers.
and system functionality can be jointly managed to deliver
scheduled incremental capabilities. (Lobsitz, 1988) One of the major advantages of evolutionary development

is its emphasis on user involvement and the feeling users have
Figure 2 is an overview of the steps in the TASC-EDGE that they "own" the system because their input is solicited and

model showing multiple cycles for developing a software acted upon. For the evolutionary approach to be effective,

9th Annual National Conference on Ada Technology 1991 224

"~y Determem syser Dveione

Figure 2 Steps in the TASC-EDGE Model

feedback must be collected from the user. If the users cannot refinement and enhancement primarily through the evaluation
make timely comments or feel that their inputs are going ofuserfeedbackandsystemperfoance tstics.Thesystem
unheard, they will stop providing the feedback and eventually is never really "finished" in that all system requirements are

stop using the system. Techniques used here can be manual, satisfied (this is not achievable due to the dynamic nature of the
such as providing "hot-line" support or user group meetings; user environment), rather, all of the highest priority require-
automated in a passive manner, such as providing an integrated, ments have been implemented to the satisfaction of the user
on-line change request function perhaps connected by E-mail to community as a whole.

the development team; or automated in an active way, by having
a performance monitor embedded into the system which logs Figure 3 shows what happens at various times (t,) through-

"u Syste evolltionar deelpmn basen on sr'rer ie

user activities and system responses. The feedback data must o
then be analyzed by the developers and users to provide guid- ments (An) are not identical to the as-specified requirements

ance to the next evolutionary build. (Ao). In the evolutionary model, the bias is strongly in favor of
restating and refining requirements. At the end of each incre-sn dmental cycle, the operational software (B) and performance

uaigure 2suac Step the theolutionaryModel

data serve to define new and more detailed requirements (A,) via
feedback from the users. This process continues for the duration

in an etoluonary model, the underlying premise ofthe QApro. of the software acquisition. In this case, the final system (Bn.i)
cess is that the requirements as-specified at the end of each matches closely to the requirements as they are known at the
incremental requirements analysis phase are incomplete and tise (An).
lacking in detail. Thus, the goal of the QA program is to use

operational software that implements the high level require- There are several situations that occur in this process which
ments to identify and clarify the users' detaied requirements, help to define requirements. Two are the result of the shortfall
Thesystem testing isdesignedtoverify andvalidatethat thehigh between the as-built incremen and the as-specified increment
priority as-specified requirements in the "as-built" increment and two are the result of gold plating or implementing

work correctly and to ensure the reasonableness of the unspeci- unspecified requirements in the as-built increment. The first
fled requirements that are implemented as a result of the design situation, and perhaps most serious, is that of "real shortfall."
and coding process. The harder QA work takes place after put- Here, low priority requirements were dropped from the incre-
ting the system into operational use. There, the QA process must ment since the developers ran out of time and/or money. But if
be designedto evaluatetheusers' feedbackandotherdatatosep- the shortfall is real, the users will raise the priority of those
arate the real requirements from the incorrect ones. The QApro- requirements so that they are implemented in a subsequent in-
cess in the evolutionary model seeks to find opportunities for crement. The second situation is called "fortuitous shortfall"

225 9th Annual National Conference on Ado Technology 1991

B.I'[L - i' I I I
I_ I l

L__

',I II 00.0I

an- I Inalkted aId EV bk d AgabnM A,

Figure 3 Typical Evolutionary Model QA Results

because it covers the low priority requirements that were each release are refinements from previous specifications, or
dropped from the increment and it trns out that the users, after newly defined requirements. Both types of requirements can be
using the operational software, decide they are unnecessary or derived from users' feedback on existing (delivered) releases.
continue to be low priority. The next situation is called "false To maximize the inclusion of new and modified requirements in
gold plate" where the as-built increment implements unspeci- an upcoming development increment, users' feedback is typi-
fied requirements that turn out to be real. Finally, there is "true cally solicited prior to the design of the next increment.
gold plate" when the as-built increment implements either spe-
cified or unspecified requirements that turn out to be unneeded During design and implementation, developers must aim
or even wrong. This situation is often benign to the majority of for a steady target - a requirements baseline - to ensure that
the users, but of significance to the buyers and developers the next release will be both verifiable and valid. Classic water-
because it consumes resources and may unduly constrain subse- fall development models foster this by "freezing" requirements
quent development, at a preselected point prior to any design work. Evolutionary

development models, however, continue to collect new or modi-
The magnitude of these situations will vary, but all four sit- fied requirements as development progresses. At what point in

uations are likely to arise. Moreover, notice that even though an evolutionary development life cycle should the requirements
some of the situations may cause problems for the users, all of be frozen and a baseline established? When is it acceptable to
the situations serve to identify and validate the users' real "thaw" them, revise specifications, and establish a new base-
requirements and that all of the problems can be fixed in later line wihout impacting consistency, quality, or validity?
increments.

OUALITY ASSURANCE ISSUES IN TASC-EDGE Baselines for Freezing Requirements -
EVOLUTIONARY DEVELOPMENT At the beginningphases ofthelife cycle, the TASC-EDGE model

defines two baselines - the Functional Baseline and the Incre-

To this point, we have discussed the contrasting goals of the evo- ment Baseline. These baselines are important in solidifying
lutionary vs. classic waterfall life cycle models. Both models requirements prior to design and implementation work, but also
have strengths and weaknesses. When applying evolutionary provide vehicles formodifying requirements to allow for system
development to critical, ultra-reliable systems (especially Mis- evolution.
sion Critical applications), the model must address issues that
could negatively affect the quality of the delivered product.The The successful completion of a System Requirements
TASC-EDGE life cycle model is a variation of an evolutionary Review (SRR) establishes the Functional Baseline. This base-
model - it offers solutions to issues in three life cycle areas: line captures all known high-level requirements to be met by the

overall system. The requirements are tagged with a relative
" Establishing a requirements baseline for developers priority indicator and are documented in the High-Level

while actively soliciting new requirements Requirements Specification. The Increment Baseline is estab-

* Applying configuration management techniques to lished following the successful completion of an Increment

evolving subsystems on different development tracks Baseline Review. This baseline constitutes a subset of total
system requirements - predominately those requirements that

" Certifying that a system release is ready for an opera- currently have the highest priorities.
tional environment.

In the following discussion, we will explore the impact of At this point in the life cycle, design, implementation. veri-

each issue on quality assurance practices. Solutions offered by fication, integration, and system validation can build towards a

the TASC-EDGE model will be described. static target - the Increment Baseline. Each new or modified
requirement (and its accompanying priority) received from con-

Establishing A Requirements Baseline currently fielded system releases are added to the High-Level
Requirements Specification with a "pending" status. These

Fundamental to the evolutionary development model are incre- new requirements are not yet part of any baseline, but eventually
mental "design/code/test" cycles where the requirements for may be.

9th Annual National Conference on Ado Technology 1991 226

Reests _ B__ elin- After a developed increment the contents of Incremental Baselines. The steering group also
is integrated into a system release, results from operational test- provides guidance that often influences the "direction" in
ing or user feedbackon the installed release may be justification which the total system evolves.
for revisiting High-Level Requirements. This invokes the next
iteration of the evolving system. All requirements and priorities Lower level subsystem CM activity would be managed by
gathered during development and post-development activities more classical Configuration Control Board (CCB) groups. One
are reevaluated and substantiated in another SRR, resulting in a CCB for each parallel subsystem development effort is needed.
new Functional Baseline. In effect, the requirements have Working within the constraints of the Increment Baseline, these
"thawed" and another Increment Baseline is established for lower level CM groups manage the identification, status
developers. The new baseline reflects users' experience, new accounting, change control, and auditing requirements (MIL-
knowledge, and deeper understanding about actual system STD-483A, 1985) of the developing subsystems.
requirements. Boundaries Between CM Levels - Within the TASC-

Validation of a completed system release is accomplished EDGE model, the critical boundary of responsibility between
by functional testing. Testing criteria work well for low-level any two CM levels is defined by interface specifications.
requirements, but a system's satisfaction of high-level, often Changes to interface specifications that potentially or realisti-

intangible requirements (e.g., usability) requires an additional cally impact upper level integration must be reviewed and
validation component. TASC-EDGE employs system evalua- approved by the next higher CCB level.

tion as a necessary step in certifying a release. Evaluation is a The importance of interfaces is emphasized in the TASC-
mixture of two primary areas: users' calibration of subjective EDGE model by requiring all interface definitions to be frozen
validation criteria and improvement recommendations. Evalua- early in any increment development. Interfaces must be defined
tion feedback drives the next increment, reestablishing the next no later than the System-Level Design phase, and are approved
series of baselines. at the System Design Review. Beyond this point, subsystems

Senaratelv Evolving Configuration Items may iterate and evolve independent of other parallel efforts,
providing interface integrity is maintained.

Successful development of a large, complex system hinges on Certifying Readiness for an Operational Environment
many technical and management elements. A fundamental ele-
ment is partitioning the development of the total system config- Classic waterfall models assert development frameworks rela-
uration into agroup of more easily managed subsystems. Proper tively unsympathetic to users' changing requirements - the
communication and interaction among integrated subsystems models advocate a path of stepwise refinement that originates
are crucial to the quality of the finished product. Classic water- from an unyielding (and often painfully established) require-
fall development models promote this by managing single (and ments baseline that is assumed correct. While increasing the risk
typically parallel) development efforts for each subsystem. of delivering an obsolete system, the waterfall model minimizes
Each subsystem is managed as a configuration item. Careful errors and inconsistencies in the development process by sacri-
configuration management (CM) of requirements, designs, ficing requirements flexibility. Quality assurance work, namely
code, interfaces, and documentation ensures that each subsys- verification and validation, can be applied rigorously. Consis-
tem stays "current" with respect to the other system configura- tency and completeness of work is certified before advancing to
tion items. the next step; final system validation is performed by comparing

the as-built system with the original requirements baseline.When using an evolutionary development model, CM is a
greater challenge. A large, complex system may still be parti- Evolutionary development models provide a different
tioned into subsystems, but each subsystem may iterate and result: they minimize the risk of delivering an obsolete system,
evolve seemingly independent of other parallel subsystem but typically are less structured in development process formal-
development efforts. As each subsystem evolution "goes its ities. If left unchecked, validation and certification of a system *s
own way," how can system-level management assure the quali- operational readiness (especially for Mission Critical applica-
ty and integration success of a planned system release? How can tions) can be an issue. How does the certification team ensure
CM techniques prevent separately evolving configuration items that all system components have been developed to satisfy the
from jeopardizing interfaces? "correct" and most current requirements?

Multiple CM Levels - Consistent with sound design Tracking Defects and Enhancements - Tightly man-
principles emphasizing information hiding (Parnas, 1972) and aged "discrepancy" tracking is incorporated into TASC-EDGE
functional independence, any large system should be parti- to assist in certifying system releases. As the overall system iter-
tioned into relatively isolated subsystem development efforts ates, evolves, and approaches a release point, a discrepancy in
regardless of the life cycle model being followed. The TASC- any increment is clearly categorized into one of two categories:
EDGE model defines multiple levels ofCM responsibilities, de- a maintenance order (MO) or an enhancement request (ER).
pending on the size and complexity of the total system. Maintenance orders document defects - system behavior that

deviates from the specification. Enhancement requests are addi-
For example, a system comprised of a lower-level collec- tions or improvements that act as catalysts for evolution.

tion of subsystems could employ two CM activities. The top
(system) level CM would be managed by a Steering Group. This Prior to Operational Testing, all "open" MOs must be
group has primary responsibility and control over the relative resolved, determined innocuous by the responsible CCB or top
priorities of the requirements and determines, for the most part, level steering group, or fully documented as an operational

227 9th Annual National Conference on Ado Technology 1991

ftsting isme. ERs am collected and each is tagged with a prior- while still controlling the transformation from requirements to
ity. Each ER's disposition and potential influence on system designtocode.Figure4illustratesthedevelopmentphaseswith-
evolution will be evaluated in the next increment's high-level in the TASC-EDGE development life cycle and each phase is-eguients phase. described in detail in the following sections. Table 1 defines the

documents, software specification data, and reviews required for
Defects vs. enhancement distinction, rigorous ER/MO the delivery of an operational system under the TASC-EDGE

racking, and successful completion of operational testing are development life cycle. It is beyond the scope of this paper to
key elements in certifying that a system developed using TASC- describe the contents of all these documents and dataitems; how-
EDGE is ready for an operational environment. Follow-up on ever, brief descriptions are included when the items are men-
corrective action further enhances TASC-EDGE software qual- tioned in the description of the development phases. The use of
ity. Corective action eliminates recurring errors by diagnosing CASE tools and automatic document generation is strongly sup-
and correcting problems that cause errors. These QA activities ported by the QA requirements to prevent any delivered docu-
combinetominimizetheriskofincorporatingadefectivedevel- mentation from being out of "synch" with the delivered
opment increment into any system-level release. software.

I Releaseshtcrease Certification Confidence The table lists the documents, data, reviews, and baselines
-Confidence in having achieved testing thoroughness is a key against the eleven different life cycle phases. The dark boxes
criterion in a system's ability to pass certification. A life cycle indicate when a particular item or activity is considered "deliv-
model smessing incremental releases raises testing confidence at erable" either internally or to a customer, the light portion of the
certification time because the system has already progressed horizontal bars indicates that the item is being created or
throughmultiple,tested releases. Eachrelease has, by definition, updated during that phase. Some of the documents and develop-
passed validation. The system has been "shaken out" multiple ment data have multiple deliveries, indicating a preliminary
times before operational certification is attempted. Furthermore, version(s) and then a final version. This supports the general
asa system evolves usingTASC-EDGE, completeness ofvalida- principle of creating an "as-built" version of the development
tion test sets increases as a natural by-product of evolving data prior to the completion of a configuration item or the
requirements. Automated tools assisting in regression testing release of an increment.
can streamline validation efforts and provide a high degree of
accuracy in discovering incremental defects. As illustrated in Figure 4, several iterative loops are built

DESCRIPTION OF THE TASC.EDGE into the development cycle. At the lowest level, there is a loop
OUALITY ASSURANCE PROCESS involving Low-Level Design, Implementation, and Verification

test called the Configuration Item development cycle. This
The TASC-EDGE development life cycle is designed to provide cycle allows for a design to be iterated on before it becomes fro-
thegreatestflexibiityinaccommodatingchangingrequirements zen and released for integration into an increment. This loop is

C-211300
12-23-0

Configuration Item Increment
System

Figure 4 Iterative Phases in the TASC-EDGE Methodology

9th Annual National Conference on Ada Technology 1991 228

Table I Software Quality Assurance Requirements for TASC-EDGE

TAS-DGI Lie CYt. P-es.

sydm Depmnt Plan W m m
Oetabd Requiemnts
(Funwns an &W ~gaces
Test Phi, an Spodkieuon

Relsme DccmsorWim

m m mmO•-Rw~w equet

D rsfed or updoted

controlled by having to deliver the functionality specified in the High.Level Requirements - This phase identifies the
System-Level Design Phase. scope and relative priority of the system's required functions

from the users' perspective, identifies system requirements
The next level loop is defined as the completion of a specif- from the developer's perspective, and plans the development

ic Incremem of system capability which may incorporate mul- project. This phase is ended by successfully completing a Sys-
tiple Configuration Items. This loop spans the Baseline tem Requirements Review and establishing the Functional
Increment phase to the System Validation Phase. This loop Baseline. The focus of this phase's activities is the creation of a
allows the development process to evolve the system require- Concept of Operations that describes to the users what the new
ments by incrementally building the system and reassessing the system will do and how it will perform. Typically, this involves
system requirements through system validation testing. This prototyping important system functions and user-centered
loop is controlled by the Baseline Increment Phase which pro- requirements analysis (Martin, C.F., 1988). Once the high-level
duces an increment baseline description. requirements are understood, detailed requirements are def-

erred to the System-Level Design Phase.
The final loop is the System development cycle which can

contain one ormore releases that have passed through a rigorous The Concept of Operations includes implementation prio-
operational testing. Canges to the system, once it has achieved rities for each described function as well as performance
an Operational Baseline, can reset the development cycle as far requirements tied to these functions. Finally, a System Develop-
back as a reassessment of the High-Level Requirements, or can ment Plan is created to describe how the system will be devel-
involve the development of another set of increments to achieve oped incrementally based on developing the highest priority
the next level of planned-for capability, functions first and adding lower priority functions in later incre-

ments. This plan also includes describing the application of the
The following sections provide a brief overview of the acti- quality assurance process and the project's configuration man-

vities and quality assurance requirements for each of the eleven agement practices. The Quality Assurance activities in this
development phases. phase center on the review of the Development Plan and ensur-

ing that the users are satisfied with and understand the Concept
NedsIid ficaion - The purpose of this phase is to of Operations.

determine amd evaluate a potential project's scope of effort, lev-
el of organizational support, assessment of risks and likelihood Baseline Increment - This is a relatively brief activity
of success. Development successes/failures of other similar but crucial to the successful use of the Time-Box development
projects ae evaluated to incorporate their "lessons learned." method. Thisphase creates a baseline defining the next develop-
This phase typically involves creating a proposal for the devel- ment increment. This Increment Baseline describes the subset
opment project and gaining organizational support. The output of the high-level functions to be developed in the current incre-
of this phase is the agreement to proceed with the development ment and the relative priorities of each of those functions. Dur-
project. ing the Increment Baseline Review, schedules and budgets are

229 9th Annual Notional Conference on Ada Technology 1991

set for the completion of the increment and the development frozen and "delivered" with the software. This includes an au-
priorities are firmly defined. QA is responsible for ensuring that dited version of the design specifications and a preliminary ver-
the baseline is well defined and that all parties agree to the estab- sion of the Release Documentation (which now includes all the
lis priorities. software configuration data). The activities in this phase in-

volve the unit testing of all the Configuration Item's compo-
System-Level Design - This phase is really a combina- nents and the creation of a configuration baseline that will be

tion of requirements analysis and top-level design, it creates or used during the integration test phase. As modules are unit
expands on the detailed requirements by first identifying specif- tested, they are compared to the design specifications and any
ic requirements based on the high-level requirements priori- discrepancies are analyzed. The result of this design audit may
tized for this development increment. These detailed require- be a change to the software orto the design information depend-
meets are then assigned to the various system components and ing on the reason for the discrepancy. Enhancement Requests
the interfaces between the components are defined. As detailed are generated if modifications to the system are desired.
requirements are identified, matching test criteria are also iden-
tified. A detailed requirement cannot be defined if the test crite- SystemInturation - This phase assembles the separate
ria cannot be established. The result is that each of the configuration item baselines and tests the integrated system for
components is allocated a set of required functions and interface "end-to-end" correctness. In addition, the final work on the sys-
specifications are developed to define how each component tem validation and operational testing plans and specifications
interfaces to the other components in order to satisfy the detailed are completed. Any problems identified in the integration test-
system requirements. A Detailed Requirements Review is held ing are recorded, categorized as Maintenance Orders or
to review the results of the analysis for this increment. Configu- Enhancement Requests, and tracked to resolution.
ration control is established for the interface specifications so
that any changes to the specifications required by subsequent System Validation and User Evaluation -It is now time
design or development activities of a particular component is to get the real users of the system involved in the new increment
communicated and agreed to by all affected components. of system functionality. A series of validation and evaluation

tests are set up to test the system and its associated user docu-
mentation in a near operational environment with different

comonDnt gby -cThs a ty icv s accomplished on a users. The evaluation process can be supported by usability test-
component by component basis and uses the Detailed Require- ing to judge the "ease of use" and other subjective criteria. This
mets as the design guidelines. The results of this design activ- is done by measuring the efficiency of different users trying to
ity create a preliminary version of the Design Specifications for execute specific system functions and analyzing performance
a component which is reviewed at a Software Design Review. bottlenecks.
The draft version of the component design specifications will
not be completed until the Verification Phase, at which time, anaudit of the implemented software will update the design infr This phase requires the base lining of the entire system,
mation with the actual implemented design. This allows smal including the software, the release documentation, and all thematin wth te atua impemeteddesin. hisallos sall supporting design and test data. All these together make up the
changes to the design to be incorporated without a large config- Portingeine data Al tese togehe ak upetheuraton ontol oerhad;howverchagesto te cmpoent Product Baseline which would be released to become an Opera-
uration control overhead; however, changes to the component tional Baseline ifthe results of the validation and evaluation were
interfaces have to be reviewed at a higher level. The QA respon- successful. However, some early increments are created just to
sibility in this phase is to ensure that the design specifications get the feedback and perform ance evaluation from this phase and
are reviewed by a panel of experts and that any changes to the aet teedb coman eration from th tase
component interfaces that result from design decisions are the development team would go back and create another incre-agreed on by the Configuration Control Board. tedvlpetta ol obc n raeaohrice

ment after reevaluating the high-level requirements.

Inplmelatoon - The bulk of the work in this phase is Operational Testing - Once an increment is released for
the actual construction of the software modules and the creation operational testing and placed in its final operational environ-
of the release documentation (users' manuals, on-line help, nent, any changes to the software and design data are carefully
operator's manuals, maintenance manual, etc.) and the test controlled. Each set of changes could require a retest of the
specifications. Unanticipated problems at this phase may cause entire system. The goal of operational testing is to assess the
changes in the design specifications and even the detailed inter- reliability of the developed software and the accuracy of the
face requirements. If the interface specifications need to be operations and users manuals, not the appropriateness of the
changed these changes must be reviewed by the Configuration applications (this should have been determined during valida-
Control Board. Additional Design Reviews are held during this tion and evaluation). Any problems during the test are recorded
phase to review changes to the design and to have implementa- and tracked to resolution.
tion walk-throughs of developed software. The QA responsibil-
ity in this phase is to ensure that adequate reviews are held, that System Operation and Evalbation - Once a release has
CCB activities happen quickly and that a strong configuration passed operational testing, it is ready for actual operation. The
control system supports the development activity and tracks important aspect of this phase to the TASC-EDGE life cycle is
each software module that is developed, the opportunity to learn from the successes and failures of the

system. Much attention should be paid to the experience and
Vrificatin- This phase is the conclusion of the Config- suggestions of the users in order to incorporate recommended

uration Item development cycle and all associated data are modifications into future releases of the system.

9th Annual National Conference on Ado Technology 1991 230

SUMMARY confidence by continually evolving validation test sets and
ensuring testing thoroughness.

Wehavereviewedthequality assurance assumptions, goals, and
results of the two most popular life cycle models: stepwise The TASC-EDGE model uses 11 development phases and
refinement (the "waterfall model") and incremental release various quality assurance activities and products. Several itera-
(evolutioary development). The goals are quite different. tive loops are built into the development cycle, maximizing user

feedback on incremental releases, to ensure that the delivered
The waterfall model assumes that users are able to describe system meets users' real requirements.

system requirements completely and consistently, hence the
conclusion that as-specified requirements at the completion of
requirements analysis are nearly identical to the users' real 1. Boehm, B.W., "A Spiral Model of Software Development
requirements. Throughout development, verification and vali- and Enhancement," Proceedings IEEE Second Software
dation activities are biased against restating requirements. Process Workshop, ACM Software Engineering Notes,
When the original assumption about requirements is shown to August 1986, pp. 22-42.
be false, the waterfall model delivers a system that does not
meet the users' real needs. 2. Brooks, F.P., "No Silver Bullet - Essence and Accidents

of Software Engineering," Computer, April 1987,
Evolutionary development assumes that users are unable to pp. 10-19.

communicate requirements well, hence the as-specified require-
ments are incomplete and lacking in detail. Throughout the 3. Clark, P.G., Lobsitz, R.M., and Shields, J.D., "Document-
development process, quality assurance in the evolutionary ing the Evolution of an Information System," Proceedings
model seeks to find opportunities for requirements refinement ofthelEEE1989NationalAerospaceandElectronicsCon-
and enhancement. The opportunities are gained through evalua- ference, NAECON 1989, May 1989, Volume 4, pp. 1819-
tion and requirements respecification. There is a strong bias 1826.
towards restating requirements. 4. Lobsitz, R.M., "Growing an Information System Using

The TASC-EDGE model addresses the requirements the TASC-EDGE Methodology," Proceedings of the
uncertaintyproblem.The model is a combination ofclassical life IEEE 1988 National Aerospace and Electronics Confer-
cycle activities and iterative enhancement at the development ence, NAECON 1988, May 1988, Volume 4, pp. 1328-
level. Theuse of development time-boxes, rapidprototypes, and 1333.
user feedback allow TASC-EDGE to deliver systems that meet 5. Martin, C.F., User-CenteredRequirements Analysis, Pren-
users' real needs. Complexity is layered into system by satisfy- tice Hall, New Jersey, 1988.
ing high-priority requirements in early releases, while continu-
ally managing schedule, budget, and system functionality. 6. Martin, J., Information Engineering, Savant, London,

Evolutionary development, when compared with classic England, 1986.

waterfall development, has three quality assurance issues. The 7. Parnas, D.L., "On the Criteria to be Used in Decomposing
first is how to establish requirement baselines while actively Systems into Modules," Communications of the ACM,
soliciting requirement modifications. The TASC-EDGE model Vol. 15, No. 12, December 1972.
resolves this by defining two baselines: a Functional Baseline
and an Increment Baseline. These baselines are reestablished 8. U.S. Department of Defense, "Military Standard, Defense
when the development cycle iterates. System Software Development," DoD-STD-2167A,

29 February 1988.
The second issue is applying configuration management 9. U.S. Department of Defense, "Military Standard, Defense

techniques to separately evolving configuration items. In
TASC-EDGE, a high-level steering group is responsible for the 29 April 1988.
"direction" of system evolution. Lower-level CCBs manage
more classical CM activities. Early freezing of interface specifi- 10. U.S. Department of Defense, "Military Standard, DoD
cations delimits boundaries between multiple CM levels. Automated Information Systems (AIS) Documentation

Standards," DoD-STD-7935A, 31 October 1988.
The operational certification of a system built using an evo-

lutionary life cycle isathird issue. TASC-EDGE employs a two- 11. U.S. Department of Defense, "Military Standard, Config-
category discrepancy tracking method. This tracking, combined uration Management Practices for Systems, Equipment,
with corrective action, minimizes the risk of delivering defects. Munitions, and Computer Programs," MIL-STD- 483A.
Also, multiple iterations of releases help to raise certification 4 June 1985.

231 9th Annual National Conference on Ado Technology 1991

Rkihard M. Lobsitz isthemanagerof theInformation Sys- support contract forthe Evaluation and Validation (E&V) of Ada
trns Technology Department within the Software and Systems Programming Support Environments (APSEs) and one of the
IntegrationDivision aTASC.Hehasover 16years ofexperience major contributors to the E&V Reference System. He received
in building information systems in micro, mini, and mainfirae his BA degree in chemistry from Cornell University and his MS
environments. He oversees the application of the TASC-EDGE degree in computer science from the State University of New
meodology to the development of information systems, deci- York at Binghamton. Mr. Clark is a member of the ACM and
sion support systems, and office automation systems for several SIGAda.
of TASC's government clients. He received his BS degree from
Washington and Lee University and an MS degree in computer C. Robert String is a manager in TASC's Information Sys-
information systems from Boston University. tems Technology Department. He has led various projects in

information systems development, networked systems, and
Peter G. Clark has over 10 years of experience in software automated software testing tools. His research interests include

development and software engineering research. His current software quality assurance, configuration management, and
research at TASC focuses on software development methods software testing techniques. He received his BS degree in com-
and environments with a strong interest in tool integration puter science from Rochester Institute of Technology and is a
issues. Mr. Clark was the principal investigator on the technical member of the IEEE Computer Society.

9th Annual National Conference on Ado Technology 1991 232

SOFTWARE ENGINEERING EDUCATION
"AN EXPERIMENT"

by
Pamela B. Lawhead

The University of Mississippi
and

Richard Hess
IBM Corporation

compilers for an IBM mainframe. In 1985 we were
Tins paper describes a software engineering educational experiment involved in hosting and testing of the ALSYS IBM 370
undertaken at the University of Mississippi in conjunction with IBM compiler and have had use of many versions of that
Federal Systems Division in Boulder, Colorado. The experiment
consisted of an effart between the two orgainations to create and compiler since then. We currently have two different 370
institute a course which reflected a closely as possible the industrial Ada compilers, 286 compilers and a Sun compiler running
software development process. The course provided the students with along with EPOS CASE development tools. All of our
the experience of creating a piece of software from specifications to compilers from ALSYS are running with their full toolset
code andfinal testing using a design methodolgy, a set of so that our students have very up to date software
specification requirements and an Ada-like design language and most available. We also have Ada math libraries available on
impotantly a very tight development schedule which was non-
negotiable. IBM provided the specifications, required the use of the mainframe. In this rich Ada environment our
DOD-STD-2167A and their own Ada PDL for use in design. They students, both graduate and undergraduate, are able to
also provided a liason with the University who met with the class for work 23 out of 24 hours per day on program
Requirements, Preliminary Design, Detailed Design and Code development. This freedom has allowed them to become
reviews. The undergraduate Junior Class was divided into five relatively sophisticated Ada programmers. They have
groups and the requirements were parceled out to each group who
then met and produced the required documents for each stage in the now presented many papers on the results of their work
lifecycle development process. One group was designated the in this environment, sharing with others the results of
integrating group and was dealt the responsibility of producing from their insights.
the different pieces the final product to be given to IBM at each stage
in the development. The process of the course provides many lessons In 1985 in response to the recommendations of our
for both academia and industry and lends itself to modeling by other graduates and that of industry, we instituted a required
iitutios. undergraduate course in Software Engineering using Ada.

Our purpose was to force c,r students to go through the
lifecycle development process, in groups, while under

OVERVIEW deadlines and providing full documentation at every step
of the process. The first four times through the course
we required an Ada tutorial written in Ada, reasoning that

At the University of Mississippi in Oxford, MS we in writing the text for the tutorial the students would
have developed a course in Software Engineering which "learn while doing". We have attempted, over the years,
uses Ada as its primary language and which requires the to teach Ada many, many different ways. We have taught
development of a large piece of software in a group it in traditional lectures as though it were a new language
environment. In past semesters the students have written different from any other. We have had the students teach
Ada tutorials and a Motorola 68000 simulator. The themselves with additional information provided by the
students have done the development always on an IBM instructor, we have used CAI tutors and we have just said
mainframe, sometimes using a 286 personal computer as "here is a book go and learn it".
a development environment because it provided a CASE
tool on which to do the design. The decision to use a We have now concluded that the most effective
CASE tool was usually a function of the design instructional method for our students is in traditional
methodology used. When the methodology was supported lectures but starting with the Pascal-like subset of Ada and
by the tool then the CASE tool wa- used. Recently a new moving quickly to the differences. The part of the
twist was provided to the course which, while language which the students have the most trouble with is
experimental, has proven to be beneficial to all involved, the compilation dependencies. They have not had any

previous experience with separate compilation so it is a
HISTORY OF THE ADA COURSE new and difficult concept for them. Only one of the large

projects developed thus far has required tasking so, even
The Computer Science Department has been involved though we teach it we are in no position to evaluate our

with Ada since late 1984 when it acquired one of the first methodologies there. We have found though that starting

233 9th Annual National Conference on Ada Technology 1991

with a peviously written Pascal program, changing the have a working product which hopefully could be
syntax and compiling it on an Ada compiler is the fastest modified to meet programming standards. With the
way to get them up and programming. remaining two options, the risks to the delivery schedule

would significantly increase. Both types of failures would
NEW FOCUS have entailed a considerable effort in manpower to meet

the critical review date, and the testing turnover date.
This year we have tried a totally new approach to the

course thanks to IBM Federal Sector Division. In the Happily none of the preceding events occurred and The
Fall of 1989 we entered into an arrangement which University of Mississippi delivered the Plot Package on
required that we produce for them a Statistical/Plot time, according to specification and with relatively few
package in Ada during the course. This required that the errors. It could be argued that with the commitment of
class not only learn Ada but it also had to learn and use the University's Computer Science Staff, coupled with the
DOD-STD-2167, DOD-STD-2167A and BM's FSD ADA dedication and enthusiasm of the students there was very
STYLE GUIDE and had to follow the lifecycle little risk that the project would not succeed.
development process presented to them in an IBM FSD
inhouse document which outlined the exact format of each The University agreed to provide IBM Federal Sector
document required during the lifecycle. The actual design Division with a Statistical/Plot package which was to
was done using IBM FSD's "Ada-Based Process Design include:
Language (PDL/Ada-2)."

1. A Correlation Function
This was a risky venture on both sides, ours and 2. Three Curve Fit Functions (Curve fit, Time,

theirs. We had to agree to complete a piece of software Step)
which was projected to be 3000 Ada lines (measured as 3. A Histogram Function
a;" counts in non-commented code). The actual final 4. A Plot Function
hardcopy document presented was in excess of 7,000 lines 5. A Statistical Sampling Function
of code, comments and headers and did not include the 6. A Set of functions to provide statistical
user's guide. We had no idea if it was possible to summaries
complete this work in the 14 weeks of a semester. We 7. An External Sort Routine
were working with a new group of students and some 8. A Tabular Function.
years they are better than others so we could not predict
their ability to learn and use Ada. We also were not The Package was to be written in Ada and run on an
familiar with BM's way of doing things so we did not IBM 370. It was to be delivered on a tape and the code
fully understand the overhead which that would entail. was to run in an MVS environment. We were going to
We were a thousand miles away and that was potentially have to write it in a VM/CMS (IBM's Conversational
a problem. We did fully understand the IBM Mainframe Monitor System - a proprietary operating system). We
Ada compilers and runtime environments so we knew did not have access to MVS because it was running on a
exactly what we could and could not do in that physically separate machine. While the two operating
environment. So our risk, while totally non-monetary systems are very different we were sure that the
was real and we were aware of it. conversion would be trivial and were confident of our
The risks incurred by IBM can be boiled down to the ability to provide the Ada code and the interface to a
following four possible results: different operating system. The code was to run on the

IBM's own Ada Compiler which we had. We actually
1. After examining the System Requirements, chose to develop it on the ALSYS compiler because the

The University of Mississippi (Ole Miss) toolset was more comprehensive and we found thewoukf", dcide that the magnitude of the Plot diagnostic error messages more meaningful. The output

Package exceed the semester time for the Plot package was to be displayed on an IBM line
constraints, printer (model 3211-1) or on an IBM 3278 display device.

2. For whatever reasons Ole Miss would We were given a delivery date and a review date for each
never really get started on the project. required document.

3. Ole Miss would deliver a product that only
met a portion of the System Requirements. IBM was to provide each student with a copy of the

4. Ole Miss would complete the project but Requirements Specification and all related supporting
without adhering to the coding standards documents. They were also to visit the campus once to
set by IBM. review the requirements with the students,once for a

preliminary design review, once for a detailed design
If a failure had been inescapable then option one or option review, once for a code review and finally for full
four would have been most desirable. In the first case acceptance of the product. It was hoped that we would be
IBM would possess a considerable time cushion to able to make some kind of networked connection with
implement a recovery plan. With option four IBM would them so that we could download the intermediate

9th Annual National Conference on Ada Technology 1991 234

documents to them and get quick feed back. As it was required to prepare and submit to the instructor
waswe used overnight mail and FAX machines to do the questions about the Requirements Specification. These

commumcation. We set up a schedule which required us questions were reviewed, compiled and FAXed to IBM so

to give them each document approximately one week that the time spent by FSD on campus would be

before they came to campus to visit so that we would maximally effective. The most critical problem which

maximize the effectiveness of each of their visits. emerged was a problem with an MVS data set design for
a very strongly typed language. This problem haunted us

CLASS STRUCTURE throughout the first half of the project, coming to be
known as the 'I/O problem" and finally taking on a life

The class met two times a week for one hour and of its own. The Requirement Specifications specifically

fifteen minutes each. The semester was 14 weeks long. gave examples in terms)f MVS data sets. Most of the

Because we knew that we had real deadlines to meet we questions prepared by the students focused on clarification

ran a graduate version of the class in parallel with the issues. There were some actual duplications in the
undergradume class. We did this so that we could have Requirements and the students located these. It needs to

some students who already knew Ada. Admission to the be stressed here that the Requirements were not perfectly

graduate class was by consent of the instructor. This specified at this point and that became a teaching tool

assured us that we would have students who already had which could not be duplicated in an 'assignment"

some Ada knowledge. The final enrollment included 21 environment. In previous semesters of this class the

students, five of whom were graduate students. The class requirements were created by the teacher and any lack of

was divided into five groups each headed by a graduate specificity could be handily corrected upon discovery by

student. For the first two weeks of the class the emphasis the students. This created an environment where the

was on Ada. At the end of six lectures the students had requirements could be negotiated and were, therefore, not

a brief test on Ada syntax and runtime environment taken seriously by the students. In this new environment

issues. During this same time period the reading the students worked very hard understanding the

assignments also included the documents provided by requirements and locating any ambiguities or lack of

IBM, especially two articles which they provided on IBM specificity because they understood that they were, for the

design methodology. These articles included "Using a most part, not negotiable. It cannot be stressed enough

Multi-level Design Method under DOD-STD-2167A" by that the students learned about the importance of well-

Dr. Nancy R. Mead and Roger J. Lockhart and 'Software written requirements in a way that ten thousand lectures

Engineering and Ada in Design" by Don O'Neill. These would never teach them.

articles gave the students a quick sense of the way FSD
approae large Ada-based design projects. It also gave For the Requirements Review IBM Representatves
the instructor a springboard for presentation of the critical met with the class for an entire class period and then met

issues in the design of very large software projects. with individual students after class and during the
morning of the following day. By the time that they

Peter Lee and Rick Hess of IBM FSD arrived on departed all problems except the I/O problem had been

Campus during the first week of February for a formal ironed out and the students could begin the preliminary

presentation of the requirements to the class. The design. The 1/O problem remained a problem because the

students by that date were already in groups and were data to be processed was coming from yet another sub-

working on writing little programs in Ada in groups (A contractor and, while the format was relatively fixed, the

stack program, a program using enumeration types, and focus had to be changed from an MVS data set to an Ada

a sort program). They had been given group accounts file. It was agreed that the preliminary design would

and were in the process of setting up their virtual contain an 1/O package which would contain our best

machines so that they had an electronic method of efforts but that we would be allowed to change it after the

communication within each group. An office was set preliminary design review. It became know to us as

aside in the department for group meetings and each "Mystical 1/O." The preliminary design was to be written

group was given a key to it. All critical documents were in PDL/Ada-2 using a set of type specifications provided

kept in this office. They h2d been briefly (the first ten by FSD to enhance and insure portability. These were

minutes of each class) presented with interpersonal skill coded in an Ada package and "withed" into the design.

development exercises designed to enhance each group's Our preliminary design was submitted to FSD on the date

ability to work together. These exercises included but specified (five weeks from the first class meeting). FSD

were not limited to such "sharing" questions as "When I was to compile it on their system, review it an then
am angry the most productive thing for you to do is', "I submit their review to us. Our students were to have
work most effectively 1. alone, 2. with one person, 3. in compiled the preliminary design prior to its submission.
groups...because" or "Three things which I do to stall Time got short and they simply ran the code through the
getting down to serious work are.... parser and submitted it. When FSD attempted to compile

it they got 29 errors all having to do with specification-
The class meeting before the IBM people arrived was body interface problems. When the students got that back

devoted to our own Requirements Review. Each group they were horrified. After a very careful review of the

235 9th Annual National Conference on Ada Technology 1991

process they corrected all of the errors and resubmitted engineering of truly modular code.
the design. This time it compiled at FSD without error
and was then available to them for preliminary design. It BENEFITS TO INDUSTRY AND IBM
was a very sobering experience for them and served as
notice that this whole thing was being taken very seriously The most obvious benefit to IBM was receiving a
by IBM. They did not fail again. In the original plan a completed, well documented Plot Package which was
PDL review was scheduled. As things progressed this written to specification and delivered on time. There
was determined to be unnecessary. The PDL review was were also several non-quantifiable but no less tangible
then done via telephone and written redlines. The only benefits to IBM. They were as follows:
changes required had to do with "Mystical I/O" and the
adherence to the stylistic conventions of an IBM internal 1. The project placed IBM in a favorable light
document which we had not been given. The document with future academic and industry
was given to us, the changes made and the PDL was computer professionals.
accepted. 2. The project illustrated that IBM will utilize

new, innovative methods and relationships
Early during the Detailed Design period the "Mystical in the production of software.

I/O" was finally fully clarified and a major design change 3. The project gave IBM employees who
by IBM was introduced. The system was to now be were supervising the project valuable
designed to run on a different machine (yet to be experience and insight into the workings of
determined) but necessarily running Unix. Because our the university comn'uter science
code was so totally modular and all I/O was completely environment.
buffered from every procedure this was a very minor
change in our package. Much to everyone's surprise it Finally, IBM provided the University with the
required one change in the declaration of the I/O Body. opportunity to showcase its talents, and IBM increased the
The change had to do with the file naming convention, marketability of the computer science students by
CMS uses a space between the name of a file and its exposing them to an industry standard software
extension, Unix uses a period. We had only to change development environment. These benefits are not only to
the file separator from a space to a period in the the students and the reputation of the University, but to
declaration section of the body of the I/O package in industry as well.
order to make the code run on Unix. The detailed design
was submitted on time, it was returned with redlines, the BENEFITIS TO THE UNIVERSITY
redlines after some discussion were corrected and the final
detailed design was reviewed on campus by a The University benefited in many ways from this
representative from IBM. experience. Our students were exposed to the conditions

of the real world of software production. They were
The coding phase of the project, while hectic, was forced to create a software package under constraints over

rather straight forward since the detailed design had been which they had no control. They came to understand the
written in Ada. It took a while to get the error handling Software Engineering Lifecycle in a way that no amount
fully worked out and to get the I/O working so that all of lecturing, reading or programming in an ordinary
output was in a form which was accepted by all as very academic environment could teach them. They gained
readable and according to specifications. experience in using industry standards which ordinarily

are not even available to them. They were able to work
The project was completed on time with the final in an environment where "almost" was not enough. They

delivery and acceptance date changed from a Friday of gained valuable experience in learning to depend on each
one week until the Tuesday of the next. This was done other and to work out their differences quickly because
by mutual consent of IBM and the University. On the success of the project depended on their ability to
delivery date we received a Sun Compiler from ALSYS work together effectively. The project was too big for
at about 11:30 a.m., we installed it in the afternoon, any one person to simply take over and do it. It was
ported the code to the Sun from the IBM mainframe and necessarily a group effort. IBM very graciously gave
the code compiled without error by 4:30 that evening. It each of them a personal letter thanking them for working
did not run successfully because we were using a time on the project. They were able to add these to their
stamp as a filename extension to keep our filenames resumes so that they could document their participation in
unique. The difference in word sizes of the two machines a "2167A" project.
prevented this from working because we could not achieve
a time stamp granularity fine enough to work. We wrote LESSONS LEARNED
a little algorithm which ensured the uniqueness of the time
stamps and the code ran correctly. The students Industry is correct when they say that students are not
understood from this exercise exactly what portability was prepared to work on software engineering projects when
and became minor experts on the significance in software they leave academia. Courses such as this one do prepare

9th Annual National Conference on Ada Technology 1991 236

them fully to work on large projects, under tight standards
and in group. In choosing such aproject the instructor
needs to be fully familiar with ali of the requirements of
the project (documentation standards as well as code
requirements). This course would have been better for
the students if the instructor had actually written code
wider these guidelines. In the future, perhaps, industries
which are preparing to participate in such projects should
Alo faculty to attend the worksho~ps which they provide
internally so that the faculty will be fully aware of the
ramifications of the methodologies. It is difficult to fully
appreciate how something is to be done from the outside.
This experiment was successful at all levels and is to be
recommended to all academic environments. it takes an
enormous amount of energy to oversee it and it takes a
level of work from undergraduate students which exceeds
the normal requirements of a single semester course.
However, the benefits to the students were so significant
that no a single student complained about the work
involved.

Pamnla B. Lawbead is eumedy on the flaculty of**h University of Mississippi where
she teaches cairnes in Progantining Language Design &a Software Engineering. she
ha beent isvolved in teaching Ada cournes since 1954. For futher information she
my be niad at Trhe University of Misasssppi

Dept. of Computer And lafoemnatice Scise
Weir 324
University. US 39677
601-232-7396

Richard T. Hes, Jr is an applications proguutner with EBM Federal Sector Division.
He is cusready reaosble for s textual user interface written Ads on the RISC 6M00
For SAuthor inforination be my be reached at:

RM MC(002C)
Dept. 7142
6300 Diagonal Hwy.
Boulder. CO 3000-90
303-924-4132

237 9th Annual National Conference on Ada Technology 1991

Leveraging CBT in Universities to Produce
Productive Ada Students for Industry

James E. Walker

Network Solutions Incorporated
505 Huntnar Park Drive
Herndon, Virginia 22070

Abstract * Working knowledge of software lifecycle
activities

Computer-BasedTraining (CBT) is not "bleeding edge"
technology, nor is it by any means a panacea to all of * AdapmjectdevelopmentexperiencewhereAda's
todays training problems. However, when used as an software engineering strengths were exploited
integral part of technology education and training pro-
cess, computer-based training can be instrumental in WorlingknowledgeofNASAandDoDsoftware
providing individualized instruction; imparting and development and quality assurance standards (e.g.,
verifying the transfer of cognitive data; providing re- DoD STD-2167A and DoD STD-2168)
medial and reinforcement instruction; providing drill * Experience in software process engineering
and practice through exams and programming assign-
ments; and by supplementing classroom instruction to • Experience in building reusable software
enable instructors to make optimal use of classroom components
time.

Experience in using CASE tools
This paper will indicate industry's expectations from
Ada software engineers; identify a traditional university Given that the total average classroom time allotted for
process for educating and training students; and illus- a 3 credit hour university level course is about 52 hours,
trate various processes for integrating Ada CBT into it becomes apparent that industry's demands for Ada
traditional university classroom environments. The
proposed processes should help improve the readiness cometgraduate ra i overhen. Crentundergraduate programs in Computer Science are in-
of students entering the Ada software engineering in- sufficient to meet the demand for trained personnel in
dustry. the software engineering industry [Warner, 1989]. As

a result of the limited amount of classroom time allotted
for instruction, most courses focus on Ada's features

Industry's Expectations from Ada Software and not on Ada project development. It is imperative
Engineers that students become equally trained in Ada as they are

educated. A reliable axiom indicates that we recall 25%
The ideal candidate for a typical Ada software develop- of what we "hear", 45% of what we "hear and see", and
ment project would hold the following credentials: 70% of what we "do".

" Working knowledge of Ada's syntax, semantics,
and constructs Traditional Ada Education and Training

Process
" Working knowledgL kda-oriented design and

development methodologies (e.g., OOD) Fifteen years ago Computer Science was virtually a new
discipline in university curricula. Programming lan-

9th Annual National Conference on Ada Technology 1991 238

guage courses of that em were constructed with heavy ing our students caters to programming in the small, but
emphasis on the instruction of syntax, semantics, not in the large.
structures, algorithms, and basicprogrammingconcepts.
Most freshman computer science majors during that Another dilemma with our traditional educational pro-
time had not been exposed to computers, let alone cess is the spurious mindset that's being created in the
programming languages. University instructors had to students. Throughout the traditional process, students
perform substantial amounts of hand-holding while are generally rewarded according to their individual
introducing students to this new discipline, efforts. The software development industry is not as

concerned with individual effort as they are with team
A Greater Awareness In Structured Programming effort. For example, if a software project manager has

a 10 member software development team and the test
Given the advent of affordable computer technology, engineers fail to perform their role thoroughly, then
many freshman computer science majors have opted to how undemanding can we expect the customer to be if
purchase their own personal computers. Studies show the manager deploys an ermneous or non-compliant
that over 50% of freshman computer science majors software system? Although the customer may recom-
have acquired programming experience in at least two mend that the test engineers be replaced, the customer
structured programming languages (generally BASIC will ultimately hold the company responsible for defi-
and Pascal) partly to satisfy their technical curiosity and ciencies in the software.
partly because many high schools are currently teaching
structured programming. Although students now have
a better foundation for university instructors to teach Revised Ada Education and Training Process
more software design and development concepts, many #1 (Leveraging CBT for Software Project
syllabi for programming language courses identify in- Development)
ordinate amounts of cassroom time for laying again the
foundation of programming fundamentals. Since students today now have a greater programming

awareness, we must update ouruniversity programming
Traditional Process for Educating and Training Ada language syllabi to take advantage of the students new
Students knowledge. In particular, we can leverage CBT to

enable instructors to better utilize classroom time by
In many universities the teaching of Ada has been focusing on the software engineering aspects of Ada,
patterned after traditional university programming versus the instruction of programming fundamentals.
course infrastructures. The following is an outline of a Software engineering is concerned with the methods,
traditional process: tools, and techniques used to develop and maintain

computer software. An appreciation for, and under-
Teach Ada's syntax, semantics, and constructs in standing of, software engineering concepts is bestgained
the classroom by applying them to a real software project [Fairley

1985].
" Issue small, out-of-class programming assign-

ments to be completed in the lab The following is a revised Ada educational and training
process that leverages CBT for Software Project De-

" Give written exams that qualify students' knowl- velopment:
edge of Ada's features

Let the CDT teach Ada's syntax, semantics,
In exceptional cases, instructors will attempt to enforce constructs, Ada-specific features, and other cog-

good software engineering practices on the small as- nitive details

signments. This is often difficult when the student has

not been introduced to some of Ada's more salient * Let the CBT issuc small programming assign-
software engineering features, such as Packages and ments at an individualized pace
Generics. Many instructors choose to postpone these
topics until later on in the course or in an advanced * Let the CBT give objective exams and verify
course. This traditional approach to educating and train- students' knowledge of Ada's features

239 9th Annual National Conference on Ada Technology 1991

" Let the CBT generate progress reports to assist I. Ada Workshop (26 Houns)
the instructor in identifying requirements for re-medial asitac A. OverviewoftheS/WProj. Deve. Infrastructuremedia assi(3 Hours)

" Let the instructor conduct an overview of soft-
ware engineering with Ada during the first half of
the course (e.g., 1/2 semester) C. Assign Projects, Issue Documentation Formats

" Let the insuctor conduct an Ada workshop dur- (2 Hours)

ing the second half of the course D. Develop Preliminary Requirements Document
(2 Hours)

" Let the students keep the CBT as a reinforcement

tool for after course/pre-employment practice. as E. Develop Preliminary User's Manual (2 Hours)
they would any textbook F. Deve. Exter. & Arch. Design Specs for Proto-

type (2 Hours)
Students should also acquire Computer Aided Software

Engineering (CASE) tool skills. CASE tools have G. Conduct Preliminary Design Review (2 Hours)
proven to be useful by automating various portions of H. Begin Det. Design & Implem. forthe Prototype
the software lifecycle. As a note of information, there
is a sharwam CASE tool for drawing Data Flow Dia- (3 Hours)
grams, Transformation Schema, State Transition Dia- I. Develop Test Plan for the Prototype (2 Hours)
grams, Structure Charts, and Entity-Relationship
Diagrams in accordance with the Yourdon-DeMarco, J. Test Prototype (2 Hours)
Gane & Sarson, Ward-Mellor, Hatley-Pirbhai, Yourdon- K. Demonstrate Prototype (4 Hours)
Constantine and Chen methods for structured systems
analysis and design (including real-time systems). This
tool can be obtained from Evergreen CASE Tools, The above workshop outline is a subset derived from
(206) 881-5149. Richard Fairley's recommendation for term projects in

his"SoftwareEngrneeringConcepts"book. Dr.Faidey's
To supplement/complement the CBT portion of the book is an excellent guideline for instructors who are
course, the following is a proposed timeline for the considering implementing a software design and de-
revised process: velopment course.

I. Overview of Ada (26 Hours) Revised Ada Education and Training Process

A. TheSoftwareCrisis&HistoryofAda(2Hours) #2 (Leveraging CBT for Software Mainte-

B. Object-Oriented Design (2 Hours)

C. Ada from the Top-Down (3 Hours) One of the first assignments generally given a new
employee in the software industry is to maintain an

D. Data Abstraction and Ada's Types (2 Hours) existing large software system. The paradox of this
E. Subprograms (2 Hours) assignment becomes obvious given that college

graduates don't have a wealth of experience in pro-
F. Packages (3 Hours) gramming in the large, let alone maintaining another

programmer's software. This is probably one of the
G. Generics (3 Hours) most challenging feats for any software engineer. One
H. Tasks (3 Hours) must first gain understanding of the software require-

ments and then wade through a previous programmer's
I. Exception Handling (2 Hours) logic before making modifications to provide enhance-

ments to the software; adapting the software to new
J. Input/Output (2 Hours) environments; orcorrecting problemswiththe software.

K. Low-Level Features (2 Hours)

9th Annual National Conference on Ada Technology 1991 240

ownt

Ci
I 0>5

U)U

I m

5 0

Is (A0
pol

00

CD C>

241 th nnua Naionl Cofernce n Aa Tchnoogy199

The Software Engineering Institute provides a docu- We do not propose CBT as a substitute for human
ment entitled: "Software Maintenance Exercises for a interaction, but rather as supplemental aid for faculty
Software Engineering Project Course" that comes with and students. Ada CBT is also an ideal tool for students
Ada source code for a Documented Ada Style Checker taking courses that heavily use Ada for illustrations. but
(DASC) software system. The document provides do not formally teach the language. Courses that fall in
maintenance exercises that will enable students to gain this category are typically Data Structures, Software
working knowledge ofmaintenance aspects of the soft- Engineering, and Operating Systems.
ware lifecycle. Students will gain experience in devel-
oping documentation standards, configuration I should mention that in my opinion, industry has a
management plans, and regression test plans. Students significant responsibility to work with faculty to provide
will also work with others to enhance and correct the them with the necessary software project exposure and
DASC software system. experience prior to expecting universities to produce

"Productive Ada Students".

Conclusions
References

By offloading the language-specific features of Ada to
an interactive CBT, instructors can now spend quality Engle C., Ford G., Korson T. S
time in the classroom teaching software system devel- Exercises for a Software Engineering Proiect Course,
opment. Instructors can issue statements of work to the Software Engineering Institute, 1989.
students and let them analyze requirements and develop
a requirements document. By emulating a contract Fairley, R. Software Engineering Conceots, McGraw
environment, students can gain experience in partici- Hill, New York, NY, 1985.
pating in design reviews and acceptance testing. Stu-
dents will soon realize that the customer doesn't always WarnerK. Integrating Ada into the University Curricu-
understand what he/she wants. Students can experience lum: Academia and Industry - Joint Responsibilitv,
the frustration of engineering changes and how they Fourth Annual ASEET, 1989.
impact cost and rework.

9th Annual National Conference on Ada Technology 1991 242

AN ADA-BASED TRANSLATOR WRITER SYSTEM LANGUAGE

Thomas F. Reid

Contel Technology Center
Chantilly, VA

Abstract. Traditional translator writer systems use designs; and building aids such as screen painters, test
Backus Normal Form (BNF) to specify the syntax scripts, and automatic generation of makefiles.
of a language, and attributes and semantic
actions to specify the semantics. The Ada TWSs can be used anywhere there is repetitive data
Translator Specification Language (ATSL) entry and the tool saves more than the overhead of
extends this to a readable structured special- building the tool. The key is discovering situations where
purpose language. ATSL uses extended BNF repetitive tasks are frequent. The TWS can then abstract
(EBNF) for syntax with embedded Ada code the commonality and provide the user with an input
fragments for semantic actions; inherited, language to express the unique.
synthesized, and local attributes for internal
communication; and with and use clauses for TWSs are an enabling technology for the final stage of
external communication. The Ada Translator the reuse spectrum which starts with the first time
Writer System (ATWS) recognizes ATSL and anyone has built a program for an application domain,
produces a stand-alone recursive descent parser/ proceeds through libraries of explicit abstract data types,
embedded semantics package in Ada and a to being implicitly embedded in the data types, operators,
parser/scanner interface package identifying the and statements of a language. The reuse libraries are
tokens, keywords and special symbols. This is not lost since the language provides the "glue" to
combined with skeletal main, scanner, and instantiate and manipulate the ASTs.
symbol table packages.

Translators

The Ada Translator Writer System (ATWS) and the Ada
Introduction Translator Specification Language (ATSL) in this paper

assume a generic architecture for a translator (Figure 1).
The motivation for this paper is helping the implementor A complex translator will have all of the components. A
quickly develop and understand the specification of a simpler translator may omit or combine components.
target language to a translator writer system (TWS).
Easy to develop in that a rich number of abstractions are The scanner (or lexical analyzer) accepts a character at
handled. Easy to understand in that the format is close a time and produces a word or token at a time while
to a traditional programming language. This work is verifying the validity of the tokens. The parser (or syntax
seen as the first step in the specification of a special analyzer) accepts a token at a time and produces a parse
purpose translator language. or syntax tree and a symbol table while verifying the

syntax of the language. The semantics analyzer uses
Traditionally, TWSs have been used to build production the parse or syntax tree and the symbol table to
compilers. However, there is a growing awareness that determine whether a syntactically correct source
the technology can have productivity impacts on building program makes sense. Finally, the synthesizer
the "little" text-to-text translators in one's daily produces the output language. Both the semantic and
environment - the kinds where one has to convert the synthesis phases may make multiple passes over the
format of a document or file. parse/syntax tree.

Potential TWS applications include constructing tool-to- Translator Writer Systems
tool interfaces for software development and end user
environments; generating documentation, standards A TWS speeds the production of a target translator. A
checkers, analyzers, and metrics from source code and TWS accepts the specification of a target translator (e.g.,

243 9th Annual Notional Conference on Ada Technology I*,- j,

Source Language Symbol Table
Cha cer

Sca nner Tkn • Parser Analyzer Synthesizer

Need a Token

Parse/Syntax Tree

Target Language

Figure I - Generic Translator Architecture

BNF and semantics for Pascal) and then produces a For multi-pass translators, the parser builds an
Pascal translator. The Pascal translator then translates intermediate form (normally a parse or syntax tree) which
Pascal source code to its target language (e.g., p-code is traversed by the back end to complete the semantic
or object code). The ultimate trial a TWS must pass is analysis, intermediate code generation, machine
producing itself. independent and dependent optimizations, and target

language generation (one or more of the above phases

Thus, a TWS is itself a translator. Figure 2 shows the according to the language definition and requirements).

relationship between a TWS and the target translator it The back end is generally handcoded. MetaTool1 and at
builds. The generic architecture of Figure 1 holds for a least one other TWS (Q-Parser4) provide tools or a 4GL
TWS as well as the target translator it builds. to help you walk ASTs.

The traditional TWS uses an attributed grammar for the Top-Down Versus Bottom-Uo
front end to describe the syntax analysis, semantic Parsers
analysis and synthesis. An attributed grammar
intermixes the syntax of a language - in our case, Parsers can either be top-down or bottom-up. If you
extended Backus-Naur Form (EBNF) - with semantic think of a parse producing a tree (like diagramming a
actions, which direct the semantic analysis and sentence in high school English) where the leaves of the
synthesis. The synthesis step performs the target tree are the source program, the quesion is whether you
language (code) generation. In a one-pass translator, produce the tree from the leaves up to the root or from
the parsing, semantic analysis and synthesis phases are the root down to the leaves. A top-down parser starts at
performed in parallel, the root and works downward to the leaves of the tree

Target Language Target Language
Specifications Source

TWS iTarget Languag - Library Support
XlTranslator + Boilerplate

Ubrary Support Target Language
+ Boilerplate Output (Product)

Figure 2 - Relationship Between a TWS and Its Target Translator

9th Annual National Conference on Ado Technology 1991 244

while the bottom-up begins at the leaves of the tree and the implied LL1 grammar.
builds the tree working up toward the root. Braces ("{" and "}") are used for closure which
Traditional production-quality TWSs are usually bottom- indicates zero or more repetitions of what is
up because their LALR grammars are cleaner than top- enclosed. Brackets ('T' and "J) indicate that what is
down's LL grammars and error recovery is easier in enclosed is optional. The vertical bar ('") is used for
table-driven bottom-up parsers. Traditional top-down alternation which separates possible choices.
parsers have had the advantage that inherited attributes Parentheses may be freely used. Figure 3 has
are easier to implement examples. Appendix A shows the syntax of how the

constructs interact.

Top-down recursive descent parsers have traditionally Embedded semantic actions. The semantic actions
suffered because the LL1 grammars could not handle left are Ada code fragments which are interspersed with
recursion which is natural for left associative operators. the EBNF symbols. The remainder of any line with
Translating left recursion to right recursion made the a "l!" (configurable through a directive) is treated as
grammar harder to understand and insert semantics. a semantic action. This is shown in Figure 3 where
However, the discovery of how to produce a recursive the EBNF is on the left hand side of the listing and
descent parser directly from EBNF has eliminated this the semantic actions are on the right. Since the
problem2 and EBNF grammars for top-down parsers are scanner for ATWS is column insensitive, this is a
more concise and intuitive than their LR bottom-up style to make the listing more readable.
equivalents. In a single pass translator, the semantic actions

determine whether the source language makes
Error recovery is still a problem because most top-down sense, build the symbol table (if needed), and

parsers normally produce HOL source code for the perform the translation to the target language.

translator rather than the bottom-up's usual tables. When the parser is done, the translation is done.

Information in a table-driven parser's stack is easier to

manipulate than the implicit stack of a set of recursive In a multi-pass translator, the semantic actions can
procedures. do as much validation and synthesis as possible

during the parse, but they must also set up the

Proposed Ada Translator structures (such as the symbol table and parse/

Specification Lanauaae syntax trees) for the passes that follow.

In the present ATWS, the semantic actions are
Our goal is to evolve a TWS specification language into captured by the scanner, sent to a temporary file,
a full special purpose language. To keep from and then merged into the recursive descent parser
reinventing the wheel, the cleanest way is to embed the during synthesis. The Ada code fragments are not
facilities of a base programming language. A model is validated in any way. This is left to the Ada compiler
the Ada-SQL interface. Thus, the ATSL will can be which builds the target translator.
loosely thought of a preprocessor for Ada. Declaration of interface oackages. The ATWS

In actuality, the amount of translator information builds a "stand-alone" parser/semantic action

overwhelms the Ada. It is the opposite of having package that can be compiled and linked into the

occasional fragments of foreign code embedded in Ada. target translator without being edited. Good
Ada influences the overall structure of the ATSL and Ada development practice is the semantic actionscode fragments are used for the semantic actions. For driving abstract data types such as those for the
an example, see the specification in Figure 3. Also, see symbol table and the parse/syntax tree. The
Appendix A for a listing of the EBNF for the ATWS. semantic actions should specify what should be

done, not how. ASTs can be developed quickly for

The ATSL has been designed with the following prototyping and tightened later for development.
principles: Figure 3 shows the declaration of the interface

packages between the specification header and the
Extended BNF (EBNF) with closure, option. declaration of the attributes.
alternation and orouoina. These constructs allow Declaration of inherited. synthesized and local
the number of productions of the grammar to be attr tes. T he r i d one proced ure fo r
reduced by at least an order of magnitude and acributes. The ATWS builds one procedure for
makes the BNF more understandable. The each production (nonterminal) of the target
resulting target recursive descent translator will language. Any time it encounters a nonterminal on
have one procedure for each EBNF production. the right-hand-side of a production, it calls the
The ATWS takes care of calculating the embedded procedure for that production.
FIRST and FOLLOW sets (i.e., the selector set) of Information (termed attributes) can be passed

245 9th Annual National Conference on Ada Technology 1991

between productions as parameters of the Interface package integrating the parser and
procedure calls. An attribute is synthesized if it is scanner.
passed from the called procedure back to the caller, User developed oackaoes. Each translator has
end inherited if passed from the caller to the called. processing which is unique and must be developed.
For an attribute, the ATWS declares a local variable These can be as separate passes or support to a
In the calling procedure and passes the variable as simple-pass translator. If these packages are
a parameter in the procedure call. In the called developed carefully they may be reused. Examples
procedure, the corresponding formal parameter Is are symbol tables and barse/stax trees.
pass-by-value If t is Inherited and pass-by- y yn
referenced if synthesized. The local attribute is an translator Calculator;
extension which allows a production procedure to with INTEGER_10; use INTEGERIO;
declare a local variable. with Scanner; use Scanner;

Each attribute Is declared as a four-tuple giving the attributes
name of the attribute, its (Ada) data type, the syn Expr. Val - INTEGER;
nonterminal to which t is attached, and whether t is Ioc Expr. Sign - TokenKinds;

Inherited, synthesized or local. Unes 3-8 of Figure syn Term. Val - INTEGER;

3 are the attributes for a fragment of an integer Ioc Term. Sign - TokenKinds;
calcultor. yn Factor. Val- INTEGER ;

calculator. lexemes

Correspondence of terminal symbols with SS Plus - "+"
identifiers. Since the ATWS has been developed as SSMinus -
a teaching tool, t is important that the parser listing SSMult - "";
be readable. The ATWS builds an enumerated SSDivide - "/";
scalar of the kinds of tokens in the target language begin
as part of the parser/scanner interface. Without Lang ::= Expr !! Put (Expr_Val);
some help, the enumeration constants are artificial. Expr ::- 1! Sign := SSPlus;
ATWS has a lexeme declaration section which [1+1-" II Sign :-SSMinus;
maps the values of the tokens to a name. Lines 9-] Term ! if Sign - SSPlus
13 of Figure 3 shows the syntax. Without the 1I then Val :-TermVal;
lexeme declarations, the semantic action fragments 11 else Val :- - TermVal;
like 'Sign - SSPlus' would look like 'Sign = TK043' !1 endif;
and the 043 would change as the language { ("+" 11 Sign :-SSPlus;
changes. I "-" 11 Sign :- SSMinus;

Term 11 if Sign - SSPlus
Translator Package Hierarchy II then Val :- Val + TermVal;

I! else Val :- Val - Term-Val;
There is a generic package hierarchy for a translator I endif;
which mirrors the generic translator architecture. They
are broken into three types of packages (Figure 4): Term ::- Factor 1I Val :- FactorVal;

{ (" 1 Sign :- SSMult;
* Skeleton oackaoes. The Main, Scanner and I"/ !! Sign :- SSDivide;

GetChar packages vary little in all translators. Main) Factor HI if Sign - SSMult
produces the translator's greeting, prompts for and I! then Val :- Val FactorVal;
opens input and output files, calls the parser and 11 else Val :- Val/ FactorVal;
other phases, and closes down the program. I! endif;

ATWS uses a generic scanner which recognizes Factor::- ...
keywords and special symbols whose definitions
are supplied by the automatically generated end Calculator.
interface package. The scanner also has "standard"
code for identifiers and number systems as well as
handling the printout and directives.

GetChar provides a character at a time to the Figure 3- Example ATSL Specification
scanner. There are interactive terminal and batch
file versions. GetChar also handles directives.

" Generated pckages. ATWS generates the parser
with the embedded semantic actions and the

9th Annual Nafional Conference on Ada Technology 1991 246

GetS i i nterface

Figure 4 -Generic Module Hierarchy

ATWS Evolution Imports ::- with Identifier";" [use Identifier";"]

The concepts have been developed over 10 years of Attribute ::- attributes { (syn I inh I Ioc)
teaching translator construction courses in which the NonTerminal"." Identifier"-" Identifier";" }.
students generally modified a previous classes'
translator writer system and then used it to implement Consts ::- lexemes { Identifier"-"
small language compilers. The implementation (Non Terminal SpecSymbol I Identifier)";"}
languages have evolved through various Pascals to Prod::- Non Terminal"::" Expression
Modula-2 and is in the process of evolving to Ada. The
translator writer systems have evolved from an LL1 Expression ::- Term "I" Term)
parser generator through adding semantic actions,
attributes, and with/use clauses to providing a stand- Term ::- [SemAction { SemAction }]{ Symbol}
alone translator package.

Symbol ::- (NonTerminal
The ATWS will be able to make itself. In fact, that is how I SpecSymbol
it will be produced. It is presently implemented in I Identifier
Modula-2 and being used in a translator construction I "(" Expression")"
class. An experienced Ada student's project is using it to I "[" Expression J"
produce a Modula-2 to Ada translator which will be then I "{" Expression '"
be used to automatically rehost the TWS.) SemAction { SemAction }]

Long term plans are to develop a rich set of packages to
support translator development such as a canonical References
parse tree abstract data type. The ATWS will then have
an option to automatically build a canonical parse tree 1. AT&T, MetaToolTM Specification-Driver-Tool
and the abstract data type will provide tree walking and Builder User Manual, Release 1, June 1990.
reporting capability.

2. William A. Barrett, Rodney M Bates, David A.
AndixA Gustafson, and John D. Couch, Compiler con-

The TWS EBNF struction: Theory and Practice, 2nd Edition, Sci-ence Research Associates, 1986.
EBNF :-- Header { Imports) { Attribute) { Consts }

begin Prod{ Prod) end Identifier. 3. J. G. P. Barnes, Programming in Ada, 2nd Edition,
Header::- translator Identifier ";" . Addison-Wesley, 1984.

247 9th Annual National Conference on Ada Technology 1991

4. GCAD, OPARSER+ Translator Writer System
Marketing Literature, GCAD Systems, Inc., San
Jose, CA.

5. Niklaus Wirth, Programming in Modula-2, 3rd Cor-
rected Edition, Springer Verlag, 1985.

s eker

Dr. Thomas F. Reid is a Senior Menber of the Technical
Staff at the Contel Technology Center in Chantilly, VA
leading research and development Into software
methods, tools and environments. He Is also Adjunct
Professor of Computer Science at Virginia Tech. Dr.
Reid has held positions at the Software Productivity
Consortium, the MITRE Corporation, McDonnell-
Douglas, and IBM. He has taught more than 15 industrial
Pascal courses; graduate-level courses in compiler
construction and formal languages; and Professional
Development Seminars in Modula-2 and Pascal. Dr.
Reid received his Ph.D. in computer science from the
University of Southwestern Louisiana in 1978, his M.S. in
mathematics from the University of North Carolina in
1964 and his B.A. in mathematics from Western
Michigan University in 1962. Dr. Reid is a member of
ACM, IEEE Computer Society, the IEEE/MSC/P1151
Modula-2 Standards Committee and ACM SIGAda,
SIGSOFT and SIGPLAN. He has been Chair of the St.
Louis Chapter of ACM and Chair of the Washington DC
ACM Chapter Professional Development Committee.

9th Annual National Conference on Ado Technology 1991 248

QUALITY ASSURANCE

USING Ada AND DOD°STD-2167A

David Disbrow David Martin

TELOS Systems Group
Lawton, Oklahoma

ABSTRACT specialist be fully prepared for the conversation. Associated
documentation (DOD/MIL standards and company policy and

This paper discusses the Quality Assurance (QA) approach to procedures) must be readily available to support the QA
software development indicating its methodology using Ada position. The Quality Assurance Section is not an enforcing
and DOD-STD-2167A. agency, but a source of information and an aid to management.

The other side of the conversation is always extremely
important. Normally, there are specific reasons an item must

INTRODUCTLM be completed outside specified guidelines and QA support is
vital. Once both parties agree, a waiver or deviation is

QA is a pre-established set of instructions or procedures which prepared (if necessary). QA will prepare this documentation
when applied, act as an "extra set of eyes" to monitor, review, and submit it to the PM for signature. This allows the
evaluate, and audit the complete software development cycle to software development group to proceed without the burden of
determine the quality of all associated processes and products administrative paperwork. Also when QA submits a
from receipt of requirements to system final delivery, deviation/waiver to the PM, this is a clear indication both
However, with the introduction of Ada and DOD-STD-2167A, parties agree and this is the best approach under the
older ideas of QA must be continually evaluated to conform to circumstances.
these new directives. QA specialists no longer just monitor
walkthroughs and reviews, but become a part of them because Indirect Approach: Other techniques used by QA are
of the new requirement to present a formal status of monitoring, reviewing, auditing, and reporting. These
documentation and software to the customer during formal techniques, when implemented, use the indirect approach.
reviews. Internal problems are solved before presentation to These methods need to be discussed because they will be
the customer, causing the QA role to change significantly. referred to later in this paper.
This paper will detail this approach used by the Quality
Assurance personnel. Monitoring. By observing, listening, and checking, QA

verifies adherence to requirements of all applicable
PROJECT PERSPECTIVE policies/procedures and standards. The monitoring of

activities helps ensure that areas of concern are observed early
The Quality Assurance Element must be an independent in the software life cycle so that appropriate corrective action
activity reporting to a manager separate from the software may be taken.
development activity. Concerns must be surfaced and
resolved as early in the software development cycle as Reviewing. Reviewing is a method to verify compliance with
possible. During the software development cycle, the earlier company policies, governmental standards, software
concerns are detected, analyzed, and implemented, time and documentation, developmental libraries, programmer
effort loses are minimal. The longer problems go undetected, documentation, and source code. A periodic review is also
the more costly and time consuming they are to correct. It is made of company policy and procedures to keep them current
our policy to handle all concerns at the lowest level possible; with governmental policies and standards.
however, if necessaiy, any concern can easily be elevated to
the PM level for necessary resolution. With this concept in Auditing. Auditing is an independent activity which
mind, all interim concerns are normally resolved prior to determines through investigation the adequacy of established
formal reviews with our customer. procedures and compliance with them. Each audit is planned

to correspond with the development schedule for the records
QA APPROACH being audited. Sampling techniques are sometimes used

during the initial audit. If any problems are uncovered by the
QA personnel use both a direct and indirect approach to initial audit, a more thorough investigation will be undertaken.
accomplish their job. Normally the direct approach is QA will conduct both formal and informal audits.
preferred and is operationally friendly. The indirect approach
is much less friendly but usually uncovers a majority of Reporting. QA policy and procedures contain checklists for
concerns. Explanation and examples of both approaches are required activities during each phase within the developmental
necessary. cycle. A checklist will be completed and maintained for all

products and the associated processes required to complete the
The Direct Approach: This QA technique involves face- product. Each time a QA technique is applied, a checklist will
to-face conversations and causes software developers to clarify be completed and if concerns are noted, the affected
reasons why design or documentation is accomplished in a person/group is given a copy. Follow-up checks are
certain way. This must be a two-way conversation and both mandatory.
pa.ns must be flexible. It is extremely important that the QA

249 9th Annual National Conference on Ada Technology 1991

Using the direct approach, QA gives a more positive approach ae exuemely important to the maintainability and portability of
so their woeking relationship with other people. The indirect Ada. However, because this project requires the use of
approach causes people to feel the QA specialists are not Program Management Shell (PMS) for each module and
working as a part of the team. This, of course, is human ADAMAT does not account for this in its evaluation, Self
tndency and is not the case. Descriptiveness is basically ignored for the automated

evaluaton of Ada This project requires adequate commenting
bwithin Ada source code. This is verified during reviews and

audits of the Software Development Files (SDFs). Ada source
QA assumed some new project responsibilities during the code is filed in the SDFs.
transition to DOD-STD-2167A. The software task groups
were busy studying all of the aspects of Ada. Portability, The QA specialist assigned to a specific system will evaluate
usability, and modularity were becoming common words the Ada source code a minimum of four times during the
throughout the work place. Some gaps began appearing and developmental cycle. The four evaluations are:
the Quality Assurance Element assisted by preparing a DOD-
STD-2167A Quick Reference Guide. This assisted all aspects First. As soon as the programmer has completed unit testing
of the project by defining specific responsibilities. Software on a Computer Software Unit (CSU) and the Software
groups could easily determine what documentation would be Engineer (SWE) has certified the unit. (we do not allow a
required and when and how the document is to be delivered, programmer to certify their own code.)
This was also true for system testing, configuration
management and QA. Summaries of all corresponding Data Second. As soon as the SWE has signed the certification log
Item Descriptions and new terms were clearly explained, in the CSC SDF stating the complete CSC has passed both
Over a period of one and one half years, we had not only unit and CSC testing. (Of course, if a CSC is comprised of a
trained our employees in Ada but also became a major single CSU, then the first evaluation is eliminated.)
contractor using in the Ada language.
Currently there are several Ada tasks in progress on this Third. After the first configuration management build prior
project. System engineers/software engineers and to the Test Readiness Review (TRR).
programmers are becoming comfortable with the language,
and most importantly, Ada has given this project a Fourth. After the last configuration management build prior
Commonality among our major systems. In the past, one to system delivery.
system used TACPOL, as many as four others used SIR
(Symbolic Interpreter Routines), others used FORTRAN, and The reasons for these four evaluations are as follows:
one used Ada. Now, this Ada commonalty among systems
had system engineers discussing design approach, During the first evaluation QA will record the line count. This
organization of Computer Software Components (CSC's), and line count actually consists of three separate counts. Lines -
interface problems with resident operating systems. Software total lines including blank lines. Statements - number of
engineers are discussing multitasking techniques, internal terminating semicolons, and comments - number of lines
system requirements, system-to-system communications, and starting with (--). These line counts are recorded, the
screen displays (formats etc.). Programmers are discussing ADAMAT output report is printed, necessary files downloaded
different techniques to accomplish similar tasks and the for the Metrics Display Tool (MDT) and all "Bad Coding
reusability of Ada code between different systems. Most Practices" recorded and filed in an active file.
everyone seems enthused about learning more about Ada and
enjoying it' The second evaluation will compare the line counts for

changes, the output renort printed, MDT files downloaded to
SOFWARE EALUAONTOOS the PC and "bad codir, nractices" recorded and filed.

The QA personnel maintain a large file of records. These During the third evaluation only CSC's are evaluated and
records are used to locate and track areas of concern. To compared. If any change is detected the CSU's are then run
locate these areas certain evaluation tools must be applied, and also evaluated. Detected changes will be analyzed to
These tools are ADAMAT (Ada Measurement and Analysis determine the "Why?". These reports will be given to the
Tool) and Trend Analysis (measure of changes in applicable task manager.
documentation, code, and test procedures, defect trends and
complexity of code). These tools will be explained in part The fourth evaluation is basically a duplication of the third
throughout this paper. evaluation. Any software changes made during formal testing

are evaluated and documented. Upon completion of the fourth
ADAMAT access has been given to all software individuals, evaluation, all changes from initial certification to system
Anytime they care to evaluate their source code, it is only a delivery are documented.
few keystrokes away. To allow comprehensive use of this
tool the Quality Assurance Element created an ADAMAT QA will then take this information and compare it to other
Quick Reference Guide and the PM directed wide systems to determine shortcomings and areas of concern. If
dissemination. Normally software personnel are not pleased only one system shows a specific weakness in programming,
with scores below 80%. (Programmers take great pride in a report is generated for that specific system. If multiple
their work.) Programmers have been observed many times systems have the same specific weakness, a report
studying their source code to raise their scores. Software recommending possible training will be sent to the Project
personnel can also come to the QA office and review the Engineering Manager (PEM).
documentation, call QA, or just send the source code for
assistance with the analysis. The ADAMAT documentation is The previous paragraph began describing Trend Analysis.
maintained in the OA office. This project places emphasis on ADAMAT is a means of determining concern, and Trend
reliability, maintair.ability, and portability of Ada. Comments analysis is a way to determine the seriousness of the concern.

9th Annual National Conference on Ada Technology 1991 250

Trend analysis is used to locate, document, and determine document will be discussed at the SDR and delivered in final
corectve action to prevent concerns from recurring, draft form for the Critical Design Review (CDR). Also the

draft test plan (describing equipment needs and how the
COMMON CONCERNS requirements are to be tested) will be delivered 30 days prior to

the SDR.
A sample of concerns detected, reported, and corrected is
listed asfoilows: Quality Assurance Approach: The QA specialist actively

participates in the development and delivery of all
1. Declarations. Use of a variable rather than a constant documentation. This involvement ensures all documents
caused accidental change of an invariant. This occurred only a conform to both the contract and to requirements listed within
single time; however, reviewing Ada source for other the DOD-STD-2167A. A continuing audit of requirements
occurrences showed this was a common mistake. Corrective between the RSL and the preliminary SRS, between the RSL
action: System engineer notified and during the next and the draft test plan, and the requirements between the RSL,
evaluation, rinimal occurrences were noted. the SRS, and the interface documentation is accomplished.

The RSL will be subjected to Human Factor Engineering to
2. Functional Decomposition. A substantial number of insure that the requirements implemented in the Man-machine
instances occurred where large subprograms contained interface are user friendly. The QA specialist attendance at all
multiple functions and should have been broken into multiple working group meetings and formal reviews is considered
modules. Detection of decomposition is basically a personal essential.
opinion. The Ada Style Handbook suggests 100 statements
per module as a guideline. Normally, SWE's support the Required Evaluation: QA will conduct both formal and
small, clear, concise module concept. This is quite common informal evaluations during the software development phase.
of programmers with less than one year experience. Some evaluations remain internal to the company while othersare presented to the customer.

3. Trial and Error Programming. This is using the compiler

to verify syntax or determining the correct solution using a Internal: QA audits the RSL in comparison with the initial
heuristic approach. (Granted this is one of the purposes of a tasking document to insure all requirements have been
compiler.) This can only be detected by close monitoring of transferred and to determine if new requirements have been
compiler use. Once detected, a determination why this added so proper tracking and traceability can be maintained.
approach is being used in lieu of scientific principles must be
made. External: QA will make a presentation of the evaluation criteria

listed in Appendix D to DOD-STD-2167A. This appendix
4. Arrangement of Compilation Order. During the beginning includes, "Traceability to the indicated documents",
of the preliminary design, it was quickly determined that the appropriate analysis", "design or coding technique used",
order of compilation would cause long compile times, even if "appropriate allocation of sizing and timing resources", and
small amounts of code would change with some CSU's. The "adequate test coverage of requirements". Selected portions of
creation of subunits using "separate" became a engineering this criteria are compared to the documents required by the
issue. Example. A date time group is placed on all customer. A copy of the evaluation is attached to the formal
configuration management builds and is displayed during the minutes of the SDR.
power on sequence. The location of this specific module can
be critical to compilation times. Other Necessary Evaluations: This phase imposes other

necessary evaluations. These include the necessary equipment
CHRONOLOGY OF EXTORT requests, monitoring and reporting of internal training classes,

working group meetings, and format of documentation.
SYSTEM REQUIREMENTS ANALYSIS Ada unique features: Prototyping must be completed using

Requirements. During the system requirement analysis a Ada. Shortcuts are necessary and taken; however, Ada will be
Requirenments Summary List (RSL) containing the general list used. The SDP will contain design standards for both the Ada
of software requirements is to be implemented. Once a clear Design Language (ADL) and the Ada source code. QA will
understanding of the RSL is reached, a Requirements insure these standards are in accordance with both contract and
Definition Document (RDD) is written. The RDD will carry military standards. The SDP development is also monitored
each requirement from the RSL through the Preliminary and for structured compilation orders and functionally organized
Critical Design increasingly explaining the requirements in modules with each CSC.
more detail. A draft Software Development Plan (SDP)
(DOD-S'ID-2167A requirement) is written and staffed within SOF7IWARE REQUIREMENT'S ANALYSIS
the task gmup for comments to insure continuity, and the SDP
is submitted to the customer 30 days prior to the System Requirements: During the software requirements analysis
Design Review (SDR). The start of the preliminary Software phase, both the SRS and the Interface documentation are
Requirements Specification (SRS) is to begin developing the delivered in final draft form. Both of these documents will
requirements from general statements to very specific remain in final draft until delivery of the software. This
requiremxts. This document will also include responsibilities prevents unnecessary Engineering Change Proposals (ECP's)
for the training and testing of each requirement. Rapid through the preliminary/detailed and formal test phases.
prototyping will also be conducted during this phase. Redlines are closely monitored and copies are distributed to all
Prototyping is used to assist in the early definition of screen necessary agencies for comments.
displays and assist in the interpretation of difficult
requirements. Interface specifications must be addressed in Quality Assurance Approach: Traceability shall be carefully
this software phase to define the exact data items both checked between the updated (if necessary) RSL and the SRS.
transmitted to and received from required devices. This All requirements, including size and timing constraints,

251 91h Annual National Conference on Ada Technology 1991

specific responsibilities for training, and the testing of each External: A formal presentation will be made to the customer
requirement will be clearly defined, during the PDR. This presentation will cover the evaluation of

the required documentation to the criteria established in
Required External Evaluation: The formal evaluation Appendix D, DOD-STD-2167A.
presented at the Software Specification Review (SSR) will be
similar to the formal review presented at the SDR. The Ada unique features: The preliminary design must contain
documents are the final drafts of the SRS and the interface compilable ADL. The CSC names must be identified the same
specifications. as the project identifiers for traceability purposes. Coding

accomplished during this phase must conform with the
Internal Evaluation: The SRS and interface documents shall be standards established within the SDP.
in the prescribed format.

DETAUED DESIGN
Ada unique features: The structured approach in the SRS
contains project unique identifiers which will also become the Requirements: The required documentation for this software
same names of CSC's during the preliminary and detailed development phase is the updating of all draft documents. The
design. This project unique identifier will assist in the SDD and the IDD will be updated to include the detailed
traceability of requirements to modules and also assist in the design. The software development folders are updated to
design of some CSU's. This direct approach allows test case include CSC testing and perhaps, some test results available.
and test procedure development to begin at a much earlier part The CSU's and the test case requirements have been
of the developmental cycle. Also because of the unique identified. The STP will be updated with the individual test
identifiers, some known algorithms may be coded this early in descriptions.
the cycle. Ada source code within the repositories may be
researched to determine if similar applications exist. A PMS is QA Approach: QA will conduct a detailed audit of each CSU
developed to act as a permanent header for all developed and its associated CSC to assure the requirements are being
source code and will be used for evaluation of reusable code at fully implemented. Monitoring of general activities
future dates. This PMS will contain version number, revision (development of code, SDF's, test cases, and procedures) and
number and date, specification paragraph numbers for the continuous. Review of all activities and completion of reports
SRS, IRS, and design documents. Also audit trail information will also continue on a daily basis.
is available; engineering number, Software Control Order
(SCO) number, project unique identifier name, a description of Required Evaluation: Evaluations of the updated SDD and
the module, list of imported modules, list of called modules, IDD including their detailed designs and evaluation of each
instantiation, parameters, declarations, test cases (unit testing), CSU (module) and their associated test cases toward the
and parent unit (if Separate) is used. detailed design is accomplished. The CSC test cases for the

test identification shall be evaluated to parallel the detailed
PRELIMINARY DESIGN design. Requirements and interface testing shall be evaluated

for design completeness.
Requirements: The Software Design Document (SDD), the
Interface Design Document (IDD), and the Software Test Plan Internal: QA will monitor and review all SDFs. Insure the
(STP) are the documents required during this developmental programmer notes are completed. Verify the detailed design
phase. The test cases for all CSCs shall be identified and the contains a compilation order (CSC/CSU) designed to prevent
CSC shall become the shell for the preliminary design. SDFs long periods of compile times.
shall be opened for each CSU. External: A formal presentation is completed at the CDR on
QA Approach: A close review of the SDD and the IDD back to the evaluation criteria in appendix D, (DOD-STD-2167A).
the RSL and SRS to insure traceability is accomplished. The items evaluated are the updated SDD and IDD. CSU test
Because a requirement may require multiple CSC's and requirements, test cases, and CSC test cases are evaluated for
requirements may share CSC's, traceability from each adequate detail. Inputs must be specified and expected outputs
requirement to its CSC may be a difficult task. This are mandatory. The SDP details how the SDF's will be
traceability may be eased if the software task group will create maintained. Evaluation of the SDFs will be presented.
a matrix listing detailed mapping of each requirement to its
CSC(s). The traceability from the RSL and SRS to the STP Ada unique features: Ada, when designed properly, the
for test identification is accomplished by a matrix in appendix I CSCICSU use both the "WITH" and "SEPARATE" statement,
to the test plan. This matrix indicates each test case and keeps compilation times to a minimum when minor
(identification) and the direct association to a requirement. modifications are applied.

Required Evaluations: During the Preliminary Design Review CODING AND UNIT TESTING
(PDR), the evaluation criteria is the same as for all other
reviews. The documents evaluated are the preliminary design Requirements: The QA will monitor the development of code
of the SDD, the preliminary design of the IDD, the test cases to the schedule and with compliance to the SDP. Any
established in the updated STP and the CSC test requirements deviation from the SDP will be documented by the
for both CSC testing (programmer level) and identification of programmer in the SDR. CSC and unit testing will be
test cases (system testing). completed during this phase. All test procedures will be

validated by interim system builds as full requirements are
Internal: The preliminary design must conform with the means implemented. All software and test procedures will be
described within the SDP. Announced and unannounced validated prior to the Test Readiness Review (TRR).
reviews and audits are performed to determine compliance.

QA Approach: QA will monitor, audit, review, and report the
development of code as to the SDP. Prepare deviations from

9th Annual National Conference on Ada Technology 1991 252

the SDP on a case-by-case basis. CSU testing will be closely software development cycle, close monitoring of each
monitored and results placed in the SDF. Monitor, audit, functional area is accomplished. QA monitors development of
review, and repor on the development of test procedures. code in relationship to functional areas/groups tor code
Monitor all system builds and prepare tend analysis of similar duplication or assist in monitoring for reusability. QA also
problem encountered for each build. used ADAMAT to evaluate portability and maintainability.

This monitoring not only occurs within each software
Required External Evaluations: A formal evaluation will be development group, but also project wide. Because we have
presented at the TRR. This evaluation will include the source indicated specific responsibilities for Ada source code, these
code for each CSU, CSC test procedures, CSU test different agencies (Task groups, QA, Project Interoperability
procedures and test results, and an in-depth look at the SDFs. Coordinator, PEM, and the PM) strive in a teamwork manner

to discuss and develop the best possible Ada source code.
Internal Evaluation: QA will evaluate the update of
documentation and review the source code to MIL-STD- CONCLUDING OBSERATIONS
1815A and the SDP. The System Test Procedures will be
validated. Validated means they are syntactically correct and QA responsibilities are greatly enhanced for governmental Ada
have been run using interim software. SDFs are continually projects compared with non Ada projects. The Appendix D,
monitored to determine which CSU's and CSC's have been DOD-STD-2167A, is very comprehensive for software and
certified so the ADAMAT evaluation my be completed. documentation evaluations. As a direct result of these
Techniques are monitored and reviewed for compliance with evaluations, software and documentation are sometimes
the SDP and military standards/guidance. As test procedures delayed but concerns can be detected and resolved much earlier
are validated, some problems may be encountered with either in the software developmental cycle. Designing in Ada allows
the test procedures or the software. System Fault Reports earlier programmer oriented testing (unit testing) and earlier
(SFR) are initiated, analyzed, and the error corrected and development of test cases and procedures. Some Ada modules
verified. SFR's are maintained for input to trend analysis. can be used from system to system and coding time can be

saved.
Ada unique features: The programmers can document in the
SDF their different techniques applied to their code. And, if
followed up, techniques are documented as to their own
efficiency values. As a CSU or CSC is validated by the QA responsibilities have significantly grown because of the
assigned SWE, the source code will be run through ADAMAT new requirements imposed by DOD-STD-2167A and use of
and the SWE given the output for evaluation. Compilation the programming language Ada. Continuil efforts to learn,
times are maintained and evaluated by the software task group vain, and apply new methods are critical to both QA and the
for design considerations, software task groups to effectively work together and strive

toward manufacturing the best Ada source code and associated
C TESING documentation possible.

Requirements: All CSCKSU test results will be completed for software producing companies to remain competitive,
and filed in the SDF's. The test descriptions will be redlined reusability, portability and maintainability of Ada source code
during formal testing and the redlines incorporated into the is critical.
final delivery. Source code and/or documentation will be
updated to create the best software and associated REFERNM
documentation possible.

Quality Assurance Approach: All of the SDFs will be audited Department of Defense Standards

for accuracy and completeness. Formal testing is closely I. DOD-STD-480A Configuration Control - Engineering
monitored and reviewed. All software/documentation changes Changes, Deviations and Waivers.
made will be tracked to moito reasons and justification. All
changes will be applied toward trend analysis. 2. DOD-STD-1467 Software Support Environment dated

18 January 1985.
Required Evaluations: The SDFs will be evaluated at the

completion of formal testing. Hardware and software 3. DOD-STD-1679A Software Development dated
concerns will be documented and reviewed at Data Review 23 October 1983.
Boards (DRB's). The severity and status of all concerns
determined at DRB's will be applied toward trend analysis. 4. DOD-STD-2167A Defense System Software Development
Any change to software or its associated documentation will be dated 29 April 1988.
monitored, reviewed and reorted.

5. DOD-STD-2168 Defense System Software Quality
Ada unique features: The modularity concept of Ada allows Program dated 29 April 1989.
anomalies to be quickly located and easily changed.
Turnaround time of changed Ada code is very quick because Military Standards
only modified CSU's (in most cases) must be recompiled and
linked. 1. MIL-STD-1521B, Technical Reviews and Audits for

Systems, Equipments, and Computer Programs dated
PORTABILITY, MAINTAINABILITY, AND 4 June 1985.
REUSABJLITY

2. MIL-STD-483A, Configuration Management Practices for
The software task groups have the inherent responsibility for Systems, Equipment, Munitions, and Computer Programs
portability and maintainability of Ada software. During the dated 4 June 1985.

253 9th Annual National Conference on Ada Technology 1991

3. MIL-STD-490A, Specification Practices dated
4 June 1985.

4. MIL-STD-ISI5A, Ada Programming Language dated
22 January 1983.

MISCELLANEOUS

1. DOD-HDBK-287 Military Handbook, Defense System
Software Development Handbook dated 8 August 1986.

2. AFCS PAMPHLET 800-43 Software Management
Indicators dated 31 January 1986.

DAVID DISBROW

T7ELOS Systems Group
P. O. Box 33099

Ft Sill, Oklahoma 73503-0099

DAVID DISBROW is currently
a system engineer for the United
States Marine Corps
FIREFLEX system working
with the Center for Software
Engineering, Fire Support

Systems, Fort Sill, OK. He is employed by TELOS and has
significant experience as a quality assurance specialist and
system test specialist. David has a B.S. in Electrical
Engineering and is working toward his masters in computer
science. His interests include software development methods,
analysis of design methods and the Ada programming
language.

DAVID MARTIN

TELOS Systems Group
P. 0. Box 33099

Ft Sill, Oklahoma 73503-0099

DAVID MARTIN has an
Associate Degree in Computer
Programming, a Bachelors
Degree in Technology, and has
been accepted into a MBA
program. He has been a Quality

Assurance Specialist for six years and has worked with DOD-
STD-2167A projects for the last two and one-half years.

9th Annual National Conference on Ada Technology 1991 254

A LOOK AT SEI SOFTWARE PROCESS ASSESSMENTS

Terry B. Bollinger and Clem McGowan

Contel Technology Center
Chantilly, Virginia

Abstract: In recent years, the concept of process Such information would then be used to "weed out" low-
assessments has received much attention in the scoring organizations during bidding for DoD contracts.
software community. A process assessment is an In this fashion the DoD hopes both to avoid expensive
analysis of how parts of a software project (e.g., overruns due to inexperienced software contractors, and
people, tasks, standards, and resources) interact to provide a rather powerful incentive for low-scoring
to produce software. This paper analyzes a form organizations to improve their software process.
of process assessment that is advocated by the
DoD-sponsored Software Engineering Institute Although their process program originated as a approach
(SEI). The authors conclude that while the SEI to auditing software organizations, SEI quickly realized
has developed a truly outstanding program for that certain aspects of their program had good potential
performing process assessments, its parallel as a way of transferring software and process
effort to rank software organizations in terms of a technology. The SEI effort therefore split into two closely
five-level "maturity framework" is seriously flawed intertwined (but distinct) programs, as shown in Figure 1.
in its reliance on an unproven process model and
its sparse-coverage approach to collecting and
analyzing process maturity data. The paper ends Thread 1: Capability Evaluations
by introducing a new, more quantitative approach
to analyzing and optimizing processes. Purpose: Help DoD select, monitor contractors

- DoD performs evaluation, knows all results

Introduction • Can significantly influence contract awards

In recent years, the concept of software process * May be used to "motivate" contractor changes
assessment has become increasingly important both to
the software community in general, and to the DoD
software community in particular. In the most general
usage of the phrase, a software process assessment is Thread 2: Process Assessments
simply an evaluation of how the many parts of a project
- people, tasks, tools, standards, and various types of Purpose: Assess current software practices
resources - interact to produce software. The central
objective of a process assessment is to understand and • For internal, confidential use of contractors
improve the process by which an organization builds
high-quality, high-reliability software products. • Intended to help "unfreeze" current processes

Software process assessments are of particular interest • Provide inputs for a self-improvement plan

to companies that develop software for the government
because of a program at the Software Engineering
Institute (SEI), which is a DoD-sponsored research and Figure I - Evaluations Vs. Assessments
development center in Pittsburgh, Pennsylvania. SEI's
Software Process Program, which is headed by Watts S. The second, newer thread of the SEI Software Process
Humphrey, began as an effort by the U.S. Department of Program is process assessment, which is focused on
Defense to find a more quantitative way to evaluate the technology transfer, self-help, and non-attribution of
capabilities of software development organizations.' results. Despite the fact that they share many of the

255 9th Annual National Conference on Ado Technology 1991

same materials and key concepts, the contrasts between Are the definitions these five levels reasonable and
SEI assessments and SEI evaluations are quite marked. appropriate? Is it based on the structure of software

organizations that have proven themselves effective
One analogy sometimes heard is that an assessment is at producing quality software, or is it hypothetical?
like hiring a tax consultant to help prepare your taxes, Does it represent a consensus view of the software
while an evaluation is like having the IRS audit your community? Has it ever been thoroughly tested?
taxes. The group dynamics are, shall we say, a bit
different in the two cases. SEI assessments encourage The SEI Process Maturity Questionnaire. In both
a surprisingly free and open exchange of information SEI assessments and evaluations, the ranking of an
between members of an organization, while evaluations organization in the one of the five Framework levels
(audits) are more likely to produce the opposite reaction: is based on the results of 85 bits (about 11 bytes) of
great reluctance to answer or discuss anything except yes/no information extracted from a 101 question SEI
the exact questions posed by the auditors. As a result, Process Maturity Questionnaire. Are the questions in
process assessments tend to be better than evaluations this form reasonable, unambiguous, and sufficiently
at gleaning detailed insights into how a given software general to apply to a broad range of DoD software
processes operates. needs? Are they fair? Is the grading system by which

the questions are analyzed equitable? Does the
Goals of This Paper questionnaire make "cheating" difficult? What does

the questionnaire imply that an organization must do
The authors of this paper have participated both in SEI to "move up" to a higher level (grade) in the SEI
training classes, and in a number of modified (non-SEI) maturity framework? How does it handle technology
process assessments within their own organization. As issues?
a result, they are firmly convinced that process
assessments are an excellent tool to improve the overall Fundamental concepts. The SEI process model is
productivity and quality of software organizations, and explicitly based on the assumption that the quality
that the SEI model for performing such assessments control concepts used to manufacture assembly-line
should be viewed as a major contribution to the software products such as cars, cameras, wristwatches, and
industry. However, process assessment is only one of copper sheeting can be directly applied to
two threads in the SEI Software Process Program. software.1' 2 Is this assumption really valid for the
Understanding how the other thread of capability entire range of software products developed by the
evaluation works requires a much closer look at how DoD, or is it an oversimplification that applies only to
information is collected for an evaluation, how that a quite narrow subset of the overall DoD software
information is analyzed, and the model (SEI's "process development and software maintenance problem?
maturity framework') by which organizations are ranked.

In keeping with the spirit of SEI process assessments, SEI Process Assessments
this paper will attempt to look more closely at how SEI
currently performs assessments and evaluations, with a The major steps in an SEI process assessment are
particular emphasis on their evaluation program. It is the shown in Figure 2. One of the interesting and significant
hope of the authors that this feedback can then be used features of an SEI assessment is that it always begins
by SEI to help examine and update key features of their 'lop down," with high-level management signing up to
own Software Process Program. the program before any further actions are taken. This

approach provides a mechanism by which organization-
Specific issues that will be discussed and analyzed in wide change can be accomplished, and also gives
this paper, although not necessarily in the following participants from the organization more confidence that
order, include: their inputs may result in real actual changes within the

organization.
" SEt Process Assessments, How well do the non-

graded, non-attributed SEI process assessments After high-level management "buys into" an assessment,
work? How do people within an organization respond SEI provides intensive training to a carefully selected
to such assessments? Is confidentiality important? team of people from the organization. Once trained, this
Are there any specific ways in which the current SEI team assumes the role of internal consultants who are
assessment program could be improved? responsible for actually performing the assessment. The

trained team prepares for the assessment and selects
" The SEI Process Maturity Framework. In both SEI specific projects and functional groups to be interviewed.

assessments and evaluations, the "process maturity" Prior to the actual assessment, the selected projects and
of an organization is rated in terms of a simple five- groups are asked to fill out a questionnaire about their
level model called the Process Maturity Framework. current software process.

9th Annual National Conference on Ado Technology 1991 256

high-level management has explicitly commissioned the

Steps In an SEI Process Assessment (19901 assessment and thus committed itself publicly to taking
action on the resulting report. While this arrangement
does not guarantee implementation, it at least ensures

1. Sign up. High-level management agrees to that the report cannot be as easily forgotten or put aside.
an assessment, and commits to improvement

Although the SEI assessment program shares many of
the same materials as the SEI evaluation program, its

2. Tralnlna. A small team from the organization reliance on those materials is much less than one might
are trained in how to perform assessments. suppose. What makes the SEI assessment program

truly remarkable is not its "model" for software maturity,

The trained team prepares to but is its ability to select people from projects and groups
r athat may not even be on speaking terms and weld them

together into a forward-looking, process-oriented team.

4. Ouestionnalre. Selected projects and groups For example, a common result of an assessment is that
fill out SEI questionnaire (101 yes/no answers) groups with poor relations come to understand how their

conflicts are often just symptoms of a poorly structured
processes, and not just "personality conflicts." This type

5. Assessment The trained team performs an of information can be very valuable, since it permits long-
intensive week of project and group interviews standing conflicts to be converted into specific insights

on how to construct a more effective process.

6. Presentation. The week concludes with the Based on an analysis of both of the SEI training materials
presentation of key findings to management and experience with actually applying the SEI process

assessment model, the SEI Process Assessment

7. Report. The trained team produces a report program appears to be both well-formulated and highly
on key findings and how to implement them responsive to feedback from organizations that have

used it. Its strict emphasis on confidentiality and non-

attribution of results are remarkably effective at helping
8. Implementation. Management works to to elicit inputs and feedback that could never otherwise

follow through on improvement commitments be obtained. Overall, the SEI process assessment
program is a powerful "people tool" that has been finely
tuned to work well with many groups and organizations,
and which consistently produces valuable results for

Figure 2 - Steps In an SEI Process Assessment organizations that follow it carefully and work to use it.

The actual on-site assessment usually takes from three The only significant area in which the SEI process
days to a week, and consists of an intensive sequence of assessment may be lacking is found in the fact that it
interviews and guided group discussions. Due in large elicits far more information about processes than it
part to SEI's excellent preparation of the assessment actually succeeds in recording. The final report provides
teams, these interviews and discussions are usually major recommendations, but does not provide details
surprisingly positive in both tone and content. Team about the structure and functions of the software process
leaders are trained to encourage an atmosphere of open or processes that currently exist in the company. Such
discussion without fear of repercussions, an atmosphere information is quite valuable, since it provides a specific
that is possible only because of the very strong emphasis framework for making follow-up recommendations on
SEI places on non-attribution of all assessment data. how to improve the organizations software processes,
Final recommendations are devised based on a group and also provides a starting point for new projects that
consensus by team leaders, project representatives, and have not yet defined their software processes.
functional group representatives, and are presented to
management on the last day of the assessment. SEI Capability Evaluations

Finally, the assessment team is responsible for writing a Procedurally, an SEI capability evaluation resembles a
report that defines specific strategies for improving the simplified form of a process assessment. The team that
software processes of the organization. The chances evaluates the organization is from the government, so
that the report will actually be implemented - a concern there is no need for team training. Interestingly, the
familiar to many software engineering and quality same questionnaire is used in process assessments and
assurance groups - is greatly increased by the fact that capability evaluations - but the implications of filling out

257 9th Annual National Conference on Ado Technology 1991

the questionnaire are very different in an evaluation.
Rather than being just the starting point for detailed on- SEI Process Maturity Framework (1990)
site discussions about the process, in an evaluation the
questionnaire becomes the focal point for grading and The SEI Process Maturity Framework is a five-level
ranking the organization. Discussions between the scale used to "grade" software organizations, and to
evaluation team (auditors) and the organization thus provide specific goals for process improvement.
tend to focus on verification of the answers that were Data for rating an organization is taken from the 85
given on the questionnaire, rather than identification of graded yes/no questions (out of a total of 101) in the
specific process improvement issues and concerns. For SEI questionnaire.
example, if an organization claims that they have coding
standards that are applied to all projects, they may be
asked to provide examples of both the coding standards LEVEL I - "Initial" Processes
and code from all projects in which those standards have
been used. (Note that the IRS audit analogy is quite apt.) • SEI: "Unpredictable & poorly controlled"
Recommendations reports are written for evaluations, - Includes nearly all "unprepared" organizations
although organizations tend to view these reports as
explanations of why they failed to receive a higher rating. • No entry requirements, so skills may vary greatly

Because of the audit-style arrangement of evaluations,
the key to understanding how they work is to understand LEVEL 2 - "Repeatable" Processes
how they actually acquire and process audit information. • SE: "Can repeat previously mastered tasks"
There are, of course, many other issues involved (e.g.,
how the auditors should go about verifying that a group * Focus on management and tight project control
actually does what it claims), but unless the underlying * Focus on collecting various types of "trend" data
set of SEI grading scales and grading methods are fair to
begin with, these logistical aspects of SEI evaluations
are only secondary concerns. In this SEI assessments LEVEL 3 - "Defined" Processes
and evaluations differ vastly, for in a consensus-building
assessment the way in which the assessment is done is * SE: "Process charactenzed, fairly well understood"
absolutely vital, while in an evaluation the "group * Focus on software design skills, design tracking
dynamics" are of far less importance in comparison to • Focus on various types of traceability
how the final one-to-five "grade" is derived.

The two components of SEI ranking and grading are: LEVEL 4- "Managed" Processes

" SEI Process Maturity Framework. This is a five- • SEI: "Process measured and controlled"
level scale used to rank the "process maturity" of an
organization, and to provide guidelines for how an • Focus on technology management and insertion
organization can increase its maturity. * Focus on estimates/actuals, error cause analysis

• SEI Process Maturity Questionnaire. This is a set
of 101 yes/no questions that must be answered by LEVEL 5- "Optimizing" Processes
the organization prior to an evaluation. •SEh: "Focus on process improvement"

What these two components are and how they work are - Focus on rapid technology updating, replacement
described in the next few sections. Several aspects of
the two components are then analyzed in greater detail. • Focus on process optimization to reduce errors

The SEI Process Maturity Framework

This five-level scale is described in detail in Watts Figure 3 - The SEI Process Maturity Model

Humphrey's book Managing the Software Process.2 The SEI framework will be discussed throughout the
However, the "authoritative" definition of the levels must paper, but a few features worth noting here include:
be viewed as being the one embedded in the SEI
Process Maturity Questionnaire, since it is the Level 1 really means "Failed." Since there are no
questionnaire and not the book that is used to actually requirements for achieving Level 1, it is really best
grade an organization. Figure 3 briefly describes the five viewed as a catchall category for all organizations
levels of the SEI Process Maturity Framework. that failed to meet the minimum requirements of

9th Annual National Conference on Ado Technology 1991 258

Level 2. It therefore includes a much broader range some of the issues discussed below. However, until the
of organizational skils than the other levels, ranging new form of the questionnaire is released, the current
from organizations totally incapable of producing (1990) version is still the official document against which
software to ones whose actual track record for software organizations can and have been evaluated,
producing quality software on time may be very good. and the results derived from this form can and have been

factors in the consideration of contract awards by DoD.*Mmnaaement controls are emo~hasized. The SEI
framework places an up front" emphasis on getting a
process under management control. Management
control is the major theme of Level 2, and all higher SEI Process Maturity Questionnaire (1990)
levels are assumed to have such controls in place
before other techniques and issues are added. The current (1990) Process Maturity Questionnaire is

identical to the first version that was released in the
* Measurment Is a consistent theme. Levels 2 late 1980s. However, it is now undergoing extensive

through 5 of the framework all emphasize product review and a significantly updated version should be
measurements and the use of such measurements. released sometime in 1991.

" Process optimization Is left till last. It is interesting There are a total of 101 yes/no questions. However,
to note that process optimization is not addressed the Tools and Technology section (16 questions) is
until Level 5 of the process framework. The implicit ignored by the SEI grading process, so only 85
(and highly debatable) message of this ordering is questions are actually used during an evaluation.
that process optimization is not effective until the
process is very tightly controlled and measured. Organization and Resource Manaement (17 total)

Many of the above features tend to reflect a fundamental * Organizational Structure (7)
precept of the SEI framework, which is that software
processes are fundamentally quite similar to the types of * Resources, Personnel, and Training (5)
assembly-line processes by which cars, watches, and
copper sheets are made. Recognizing the influence of * Technology Management (5)
the assembly-line paradigm helps explain some of the
odd features of the SEI framework, such as its delay of
process optimization until each TparV' of a software Software Enaineering Process and Its Management (68 total)
product has a well-defined "assembly line" that can itself
be measured and improved. In practice, however, it is * Documented Standards and Procedures (18)
quite rare for the software products of an organization to Process Metrics (19)
be so remarkably uniform in function and form that the
software process usedto develop them will ever"evolve" * Data Management and Analysis (9)
into a fixed set of "assembly lines" for building individual
"parts" of those products. Such issues of generality are • Process Control (22)
simply not addressed by the overall SEI framework.

The SEI Questionnare Tools and Technologv (16 total)

The SEI Process Maturity Questionnaire consists of 101
yes/no questions on a variety of software engineering Figure 4 - The SEI Process Maturity Questionnaire
and process issues (see Figure 4). One rather surprising
feature of the questionnaire is that it effectively ignores This philosophy of ignoring technology issues during a
tool and technology issues, even though 16 questions onthe test are devoted to that subject. The SEI grading process evaluation is deeply embedded in the SEI
scheme ignores te technology section. model, and it shows no sign of abating in SEI's currentapproach to capability evaluations. For process
It should be noted that for some time now a major effort assessments, in which the focus is on helping people
to update and expand the SEI questionnaire has been improve how they work together, such a focus seems
underway, and that a new SEI questionnaire with more fairly plausible. However, for an SEI evaluation, in which
questions and broader coverage should be released the nominal goal is to ascertain just how effective and
sometime in 1991. However, the results of that work reliable an organization is at "bottom line" software
have not yet been made public. It is hoped by the production, such a de-emphasis on automation and tools
authors that the new questionnaire will deal with at least seems seriously out of place.

259 9th Annual National Conference on Ada Technology 1991

What is worrisome about an evaluation process that A second counter argument might be that Level 5 of the
ignores technology and tools is this: It stands a real risk SEI Process Maturity Model does emphasize technology
of rewarding organizations for building very elaborate, and technology transition, but intentionally avoids
very expensive manual processes to accomplish work making it into a key issue until the (:,ganization has
that could in many cases be done by a fully automated extensive management and process controls in place.
tool. The history of the software Industry is replete with The rationale behind this approach is to keep groups
examples where in which products such as operating from "floundering" when trying to use new methods.
systems, compilers, and databases made the manual
processes that preceded them obsolete. One problem with this argument is that it ignores the fact

that there may already be many organizations making
For example, imagine that a software group back in the quite effective use of new technologies to shorten or
early days of compilers had developed a very good but increase the efficiency of their software processes -
manually intensive process for developing mathematical after all, there are more than a few organizations out
aerospace software. At the same time, a competing there that are using compilers, database systems, and
group realized that a Fortran compiler could drastically tools quite effectively without ever having had to reach
cut the cost of developing such software and also greatly the equivalent of Level 5 in the SEI framework.
reduce the number of code defects due to mistakes in the
manual translation of formulas into assembly code. More importantly, one must also ask whether such

technology transition issues really should be pushed off
An evaluation model that ignores technology as a way of until Level 4 (a "managed" process) or Level 5 (an
automating parts will tend to be blind to such issues, and "optimizing" process) of the SEI model to begin with.
could very well score the first group as having a "better' Given that very few software organizations would at
process- despite the fact that its hands-on approach is present rank above Level 1 or Level 2 in the SEI model,
more like to produce erroneous products, and at a is it really true that such organizations should halt their
significantly higher cost! The importance of avoiding acquisition of new tools and cease looking at ways to
such people-over-automation decisions for processes automate their own work until they reach Level 4 or
that could be automated is discussed by B. Barnes and Level 5 of the SEI maturity scale?
one of the authors in a recent article on software reuse.3 Questions of this type deal as much with the nature of the

The key point in the above example is that the second SEI grading system as they do with the SEI process
group has not really eliminated any process steps - maturity framework, so let us now take a closer look at
they have instead used available technology to automate that grading system. Additional information about the
the error-prone process step of converting formulas into questionnaire (e.g., examples of actual questions) will
assembly language. Thus the addition of a tool in a case also be presented as part of the discussion of the grading
like this clearly meets the spirit of the SEI program, since system and framework.
it moves the overall process towards greater reliability by
increasing the rigor of how a key part of the process is The SEI Process Maturity Grading System
done.

As mentioned before, the SEI grading system is based
One counter argument might be that recognizing a good on 85 yes/no questions that appear in the SEI Process
process is valuable in and of itself, and thus should not Maturity Questionnaire. However, unless they have had
be confused with the "separate" issue of automation and specific SEI training in how to grade questionnaires,
tools. There is a very simple reason why this argument most people who fill out one of these forms will have no
does not hold up well - it is that the DoD has used the idea at all how the form will be graded. This is a bit odd
results of SEI evaluations to help in contractor selection, in itself, since one of the nominal purposes of the

questionnaire is to provide organizations with insights as
Contract awards are traditionally made on the basis of to how they can improve their software processes.
who is most likely to produce a high-quality product at
low cost, not who has the best "process." And indeed, The exact algorithm for grading the questionnaires can
the materials for SEI assessments and evaluations state be derived from the pubic-domain grading templates,
repeatedly that their reason for analyzing processes is to however, so any organization sufficiently motivated -
provide a better understanding of which organizations say, by losing a big contract to a competitor with a higher
will produce higher quality software at a lower cost. ranking - can certainly uncover the exact SEI grading
However, given the very substantial skewing effect that scheme and uncover its implications.
process automation can have on an organization's
effectiveness and ability to produce quality products, the The SEI grading scheme is shown in Figure 5. It can be
assumption that process quality alone is a sound metric viewed in either of two ways: 1) for a scheme used to
for comparing software organizations seems unrealistic, grade only 85 true/false questions, it is remarkably

9th Annual National Conference on Ado Technology 1991 260

complicated, or 2) for a scheme that may determine the
financial fate of an organization that works primarily on
DoD contacts, it Is remarkably simple. Both views have START
definite mutt. I

Hurdle 1 1 (92%)

The best way to understand the SEI grading system is to LEVEL 2 "Key" NO
think of it as a series of seven hurdles, each of which is Yes answers 11?
really a very small true/false test on a specific set of (12 possible)
questions. Given the quite small size of these sets, SEI
has taken the view that each set represents a sampling Hrl2
of many possible issues and concerns for a particular Hurdle 2
level. However, the sampling is not a dynamic thing, at LEVEL 2 Total NO SEI LEVEL I
least is not in the current (1990) version - the contents Yes answers 2:26? (EInEVal")
of each set of questions have remained exactly the same [(33 possible)
since the questionnaire was first introduced in the 1980s.

(interestingly, the main reason behind SEI freezing the 9 9
questionnaire appears to have been that any attempt on LEVEL 3 "Key" NO
their part to change it provoked a flurry of complaints es answers t 12
from industry that the 'rules" (the 85 graded SEI yes/no (13 possible)
questions) for a "good process" (apparently meaning one
that implements the 85 questions) were being "changed" Hurdle 4 81%)
(added or deleted) just as the organizations beganL 3No I L
building their software processes around them!) Eanswers 26? e SEIaLEVEL2Y e s a s w ers -> 2 6(",R e p e ata b le ")

Given the seven-hurdle structure, one would rather es2possible)
naturally tend to assume that it results in eight different
maturity rankings. Not so. Three pairs of the failure Hurdle 5 (92 9%)
branches are instead grouped to create Levels 1, 2, and LEVEL 4 "Key" No
3, with single branch points defining Levels 4 and 5. Yes answerse_ 11 ?

(12 possible)
For such a small sampling space, this is a remarkably
complex grading algorithm. For example, one simple Hurdle 6 (1%
grading algorithm that is effective and reasonably fair for
such a small sampling space is percentage-style cutoffs LEVEL 4 Total NO SEI LEVEL 3
such as those used in grade school and high school Yes answers _> 13? ("Defined")
tests. The problem with trying to apply overly complex (16 possible)
grading schemes to small data sets is that they tend to
chop up the data into smaller and smaller "mini-tests" Hurdle 74 (100%)
that are statistically very unreliable.

LEVEL 5 Total NO
As a worst-case example of how a complex grading can Yes answers = 4?

lead to quirky results, imagine a test with 85 randomly (4 possible)
selected questions in which each question is a mini-test
"prerequisite" for some other question. The chances of ,
failing at some point in such a test would be very high, SEI LEVEL 5 SEI LEVEL 4
since missing any question along the way would result in ("Optimizing") ("Managed")
the taker of the test being "dumped out" at that point.
Even worse, a very knowledgeable test taker who
happened to miss one of the first few questions would
receive a very low score - even if she or he answered
all of the higher level questions correctly! Figure 5 - How SEI Questionnaires are Graded

261 9th Annual National Conference on Ada Technology 1991

While the SEI grading system shown in Figure 5 is not as To understand what such effects mean for SEI testing, it
bad as the example just given, it is not that much better, is helpful to look more closely at what one of the hurdles
either. As a worst-case example, an "unprepared" in the SEI grading system looks like. The first SEI hurdle
organization (that is, one with no foreknowledge about is the set of 12 questions quoted verbatim in Figure 6.
the SEI questionnaire or grading system) could answer (Italics in the questions are from the SEI questionnaire.)
yes to all but two of the total set of 85 graded questions,
and still be classified as an "unrated" Level 1.

SEI Level 2 "Key" Questions 11990)
Another troublesome feature of using multi-hurdle 1. Does the Software Quality Assurance (SQA)
grading algorithms in combination with small numbers of function have a management reporting channel
random questions is that it can introduce a false sense of separate from the software development project
progression that is an artifact of the grading system, manaem theso n Numer 1.1.3)
rather than an inherent feature of the subject matter of management? (SEI Question Number 1.1.3)
the test. The two factors that join together to create such 2. Is there a software configuration control function
artificial progressions are: for each project that involves software develop-

ment? (1.1.6)
1. the fact that a "chained" grading system can make a

set of test questions much, much harder to pass than 3. Is a formal process used in the management re-
they would be if graded under a simpler system, and view of each software development prior to mak-

ing contractual commitments? (2.1.3)
2. the fact that those taking the test will tend to focus first

on the earliest questions in the test chain, regardless 4. Is a formal procedure used to make estimates of
of whether those questions are the easiest or most software size? (2.1.14)
difficult in the subject area. 5. Is a formal procedure used to produce software

In the earlier example a grading system that "chained" all development schedules? (2.1.15)

85 questions, these two effects can combine to make a 6. Are formal procedures applied to estimating soft-
seemingly simple test on a familiar topic into a complex ware development cost? (2.1.16)
and confusing affair. If you add to it the possibility that
the teacher might not tell you what the exact "grading 7. Are profiles of software size maintained for each
sequence" is, such testing methods begin to resemble a software configuration item, over time? (2.2.2)
nightmarish game of blackjack. Those being tested must
undergo repeated failures just to figure out what cards 8. Are statistics on software code and test errors
are where in the "stacked" grading deck. gathered? (2.2.4)

On the other hand, such grading methods can certainly 9. Does senior management have a mechanism for
induce furious preparation on the part of those being the regular review of the status of software devel-
tested. The problem, though, is that the order in which opment projects? (2.4.1)
they prepare may or may not have any real relationship 10. Do software development first-line managers sign
to the subject area. That this is true can be seen simply off on their schedules and cost estimates? (2.4.7)
by asking what happens if the order of the questions is
exactly inverted. The answer, of course, is the same: it 11. Is a mechanism used for controlling changes to
induces furious study on the part of those being tested, the software requirements? (2.4.9)
except that now they will study the most "difficult" subject
first' 12. Is a mechanism used for controlling changes to

the code? (Who can make changes and under
Although the seven hurdles of the SEI grading systems which circumstances?) (2.4.17)
are less extreme than idhaining all 85 questions, it is still
complex enough to create a strong artificial progression
effect. For example, it is quite common in SEI process Figure 6 - SEI "First Hurdle" Questions
assessments to hear people complain mildly that
although they can honestly answer yes to many Level 3 Note that because of the critical placement of this hurdle
questions, they cannot grade those answers because at the very beginning of the SEI grading chain, missing
they previously missed two or more Level 2 Key any two of the 12 questions in Figure 6 means automatic
questions (see Figure 4). Such complaints are often a failure (a Level 1 rating) of the entire SEI evaluation! The
good indicator of an unfair grading system, and should implication is that any organization that fails to pay very
not be dismissed lightly, close attention to the implied recommendations of these

9th Annual National Conference on Ada Technology 1991 262

12 questions may easily find their competitive position for Level 1 organization is characterized by".. the lack of a
winning DoD contracts adversely affected. managed, defined, planned, and disciplined process for

developing software," 2 and it is also said that of Level 1
The reason they must pay close attention is the organizations that "[u]ntil the process is under statistical
questions in Figure 6 would be very difficult to guess control, orderly progress in process improvement is not
ahead of time - even by an organization that is well-strudtured arnd would consider itself to be "mature." The possible." 2 Such descriptions clearly would not help the
problemtre gndos backoside ithelf le dcun ofThe hypothetical organization get new work, since anyone
problem here goes back to the earlier discussion of the familiar with the SEI grading scale would tend to assumeless random questions - because the number of data that the evaluation had "proved" that such descriptions

points is so low, the statistical reliability of the test were applicable.
becomes quite doubtful. One may of course respond that the above organization

For example, an organization might already collect and is only hypothetical and thus highly unrealistic, or that

use extensive data about their software process and any organization that was that good could very easily
products, such as the number and type of problems reconfigure details of how it operates to keep itself in line

found in design and code walkthroughs, complexity with the SEI questionnaire. However, that would

measures of their software and the relationship of those overlook the main point of the example. The main point

measures to test results, and total work expended each is that when developing a testing strategy for analyzing a

time a change is implemented on a baselined interface complex system, the use of a very sparse set of one-bit
definition. But if that organization happens to believe data points will always run a significant danger of giving

that the much simpler metric of size trends (Figure 6, a misinterpretation of the real situation. We will return to

Question 7) is neither relevant nor useful - well, they this theme of sparse data analysis later in the paper.
are then 50% of the way to failing their SEI evaluation! Despite all of the above points, it should be noted that the
A full failure could then come about in this way. Suppose actual subjects covered by the first hurdle questions are
that the organization was also very strongly committed to both reasonable and appropriate. The odd grading
quality assurance, so that managers and developers possibilities tend to arise more as a result of using a very
who could not show a clear commitment to quality simply small number of narrowly focused questions to collect
did not get hired. As a result, the organization developed information, rather than from what subjects are covered
an unusually solid and close working relationship in the hurdle. For example, the questions in the first
between developers and quality assurance personnel, hurdle can be grouped into four themes:
one in which developers viewed QA people as important
members of their team who were responsible for finding 1. Management controls. Four questions (1, 3, 9, 10)
problems before they mushroomed into extra work for deal with basic management controls and policies of
the developers. Due to this unusually good working the organization.
relationship, the organization developed a policy of hiring
OA people directly into projects so that they could focus 2. Confi-quration controls. Three questions (2, 11, 12)
on the specific QA needs of each effort. deal with configuration control at both the code and

requirements levels.
It would be a serious understatement to say that such an
organization was in keeping with the spirit of process- 3. Prolect estimation. Three questions (4, 5, 6) focus
level quality assurance - but how would it rate in terms on "formal" procedures for estimating project-level
of the first SEI hurdle? The answer, alas, is that none of issues such as sizes, times (schedules), and costs.
the complex history, reasoning, or even actual quality
results of such an organization would show up under the 4. Data collection. The remaining questions (7, 8) deal
SEI testing scheme, because the organization would fail with collection of data on code size and numbers of
to meet the first question of Figure 6, which asks only errors found during testing.
whether GA people have a management chain available
to them that is separate from that of the project. In this With the possible exception of the fourth theme of data
case, two strikes mean you are out, and the hypothetical collection, these are quite reasonable topics for a
organization would immediately receive a Level I rating, disorganized project or process to address. The themes
regardless of how they answered any other items on the of management control and configuration control seem
SEI questionnaire. particularly appropriate, since they provide an immediate

Such a result is even more interesting if one considers payback of reducing confusion and lost effort in a project.

what some of the SEI literature2 has to say about the Project estimation also seems to be a reasonable theme
quality and dependability of Level 1 organizations. A to emphasize early on, since it complements the themes

263 9th Annual National Conference on Ado Technology 1991

of near-term project and product control with better current review process includes invited representatives
safeguards against unrealistic future commitments. from industry, so there is clearly a sincere SEI interest in

getting industry feedback for the new questionnaire.
The last theme of data collection is more surprising,
since it Is not obvious what a supposedly immature However, the authors are not aware of any indications
software organization should do with a metric such as from SEI that the basic format of the questionnaire -
code size trends after collecting it. Possibly this is that is, a "checklist" of yes/no questions about various
intended to get data collection off to an early start, so that process and software engineering topics - is going to
the organization will have the data available for later use. change significantly, or that the SEI Process Maturity
The most likely interpretation, however, is that this is part Framework will be significantly revised. Furthermore, it
of the overall theme of gaining "statistical control" over is not clear whether the grading system is being carefully
the software process, a theme that derives primarily from reviewed at the same time - and as we have seen in the
the SEI assumption that software development is closely earlier discussions of this paper, the grading system is
related to assembly-line manufacturing, very important in determining the fairness and statisticalreliability of such a questionnaire.
The debatable nature of the data collection theme (a

theme whose two questions could by themselves cause A plausible guess is that the new SEI will be more flexible
organization to fail an evaluation) underscores that the and will include a greatly expanded, more thoroughly
twelve first hurdle questions do not represent an industry reviewed set of questions. However, it probably will still
or academic consensus about the twelve most important be based on the same general concepts of random
features of a new software process. That is not to say sampling with yes/no questions, a multi-hurdle grading
that the questions went without review before they were system, and a five-level process maturity ranking scale.
frozen into their current form. In fact, Watts Humphreys Even if it is used in a more flexible fashion, the total set
states that the questionnaire was reviewed by more than of questions is likely to remain fixed, since questions of
400 government and industry organizations. However, fairness would arise if entirely different sets of questions
there is no indication from SEI literature that the grouping were used to rank organizations.
of questions into the seven critically important grading
hurdles was reviewed or even extensively discussed Can a framework such as the one just described be used
outside of SEI. Even if it had been, it is quite unlikely that to correct all of the problems identified so far with the SEI
the very diverse needs of government, aerospace, and approach to evaluating software organizations? At the
business groups could ever be realistically packed into very least, a large increase in the number of questions
such a brief definition of what should come first. clearly would help increase the statistical reliability of SEI

evaluations, which currently can show major fluctuations
As mentioned earlier, a more realistic interpretation of based on very small numbers of "misses" of questions.
the seven sets of hurdle questions is that they are a But how well does it deal with the overall problem of
sparse, more-or-less random selection of data points ensuring that organizations will focus on concepts and
taken from the major themes of the SEI questionnaire issues, rather than building their process-is around the
(see Figure 4). questions themselves?

What About the Next-Generation Questionnaire? To answer such questions, let's look now at the issue
how well any set of predefined yes/no questions (that is,

One might respond to all of the above discussion about an answer template) can be expected to perform as a
the 1990 SEI questionnaire by quite correctly pointing method for evaluating complex systems. By "complex
out that SEI is keenly aware that their current systems" we mean systems that have many parts that
questionnaire has problems, and they have been can interact with each other in a very large number of
working hard to correct them. (One might also note that ways - a definition that clearly fits software processes!
these concerns have not kept SEI from actively using the
current questionnaire to evaluate and rank companies in Figure 7 provides a graphical example of the general
bidding situations, and that the current questionnaire problem of using fixed templates to evaluate complex,
thus must be viewed as considerably more than a highly variable system. As can be seen from the figure,
"prototype.') Isn't It likely that the new questionnaire will the central problem with such templates is that they can
correct most or all of the problems mentioned above, only "pin down" a small set of highly specific features.
thus making all of this analysis irrelevant? Even when there is general agreement that a specific

feature is necessary (e.g., in Figure 7 the template
The new questi:nnaire almost certainly will represent a checks for tires since it is hard to imagine a "good van"
substantial improvement over the current one, since it that lacks them), single-point checks are not easily able
should be based on several years of feedback from to constrain unforeseen (and unwanted!) variations of
numerous SEI assessments and evaluations. Also, the such features. One would generally not wish to define a

9th Annual National Conference on Ado Technology 1991 264

device with forklift tires as a "good van," but if the data
collected during the analysis is too sparse, it will become
very difficul to prevent such excursions. 1. The starting point- a "good" van.

One might point out that there is a quite obvious way out
of this- jut increase the number of test points! It would
only take more probe points in Figure 7 to banish the
forklift dilemna. By adding enough new questions, one
could eliminate essentially all unwanted deviations.
However, this umore fixed data points" approach suffers
from two significant problems. 2. Next, selection of "typical" data:

The first problem is that adding a large numbers of new
but still "tmed" data points will not only eliminate most
non-vans - it will also eliminate most good vans! The
reason is that fixed-point data collection requires not just
a template, but also an ideal example of what a good van
looks like. For example, if a car company decided to
produce a new, people-oriented van that replaces 3. Van plus data points define a test:
traditional cargo-oriented sliding doors with conventional
passenger doors, how would this new van rate under a
fixed-template test? The answer is that it very probably A Sparse-Data Van Test
would fail - not because it is a "bad" van, but because it
is different from the particular van assumed to be "ideal." GRAY

It is worth noting that in the SEI testing scheme, the type 00d]

of problem just described is aggravated because their
original template is based on an "ideal" organization that
never existed. The highest levels (4 and 5) of the SEI
maturity framework are extrapolations of a very small
number of individual projects done many years ago,2 and 4. This one passes - is it a good van?
the SEI literature gives little quantitative data on the

projects. Using such extrapolated information to build an
"ideal" template is roughly equivalent to building one or
two small models of a presumably ideal van, and then
using measurements from those models to specify how
the entire automobile industry should from now on go
about producing "good" vans.

The second problem with simply increasing the number
of questions is that it does not deal directly with the
problem of using fixed data points to analyze adaptive 5. Oops.
systems - that is, systems which capable of changing
their behavior in response to the testing activity.

For example, let's assume for a moment that the
Figure 7 template is looking only for a "good" paint job,
rather than an overall definition for a van. Since very little
actual data is collected about the paint job on a van, it will
not take the maker long to realize that doing shoddy work
orno workatallon surfaces far away from the inspection
points produces a van just as acceptable as one that was
meticulously painted. Figure 7 - Ambiguity In Sparse-Data Analysis

265 9th Annual National Conference on Ado Technology 1991

The absurd (but logical) end result of this thinking is for seriously in any attempt to build a new questionnaire for
the maker to buy very precise, very high-quality "spot SEI evaluations.
painters" to paint vans only at the inspection points. By
investing heavily in high quality where high quality is
"expected,* the maker can build a process that gets very
good quality ratings, and saves a bundle on paint costs. "Hey John! Do we "Uh, Marsha, our
Meanwhile, the buyers of the vans wind up with very high monitor I/O channel computers don't
quality polka dots, but little else! utilization on our have I/0 channels.

computers?" Besides, network
The current SEI questionnaire is clearly subject to this crashes are our
scenario. For example, the three configuration control big problem these
questions (2, 11, 12) back in Figure 6 imply that a ,Aw come on days, not I/01.
configuration control function must exist for each project John, we must have
and must at least be able both to control changes to both something like 1/0
requirements and code - but the questions say nothing channels in our "Well, our
about tracking of other intermediate products such as computers..." workstations do
high-level designs, detailed designs, documents, test .s./have I/O processors
procedures, and sets of reusable test data. buried down in the

hardware. They get
The intent of these three questions appears to be that the "Fantastic! Write used 100% of the
configuration control system should track changes to a that down on a piece time, I suppose."
broad range of intermediate products, including such of paper and that'll
things as changes to requirements, designs, detailed put us over into
designs, code, and test procedures. But because they Level 2 of the SEI
are only a partial sampling, they actually specify tracking Maturity Model!"
of changes only for requirements and code. As a result,
an organization that is strongly motivated to move to the
next higher level of the SEI model is quite likely to focus
first on implementing these two aspects of configuration
control, rather than dealing with the general concept.
Indeed, because they are unfamiliar with the background
of how the SEI questionnaire was set up, they may quite
honestly assume that they are supposed to set up only
these two aspects of a configuration control system. It is
a difficult thing at times to question the knowledge of the
tester, particularly when that knowledge is buried rather
deeply in the structure of the grading system rather than
the test itself.

Well-intended adaptation can also lead to some rather
amusing grading effects, especially if they involve a
question that is ambiguous, technically out of date, or
just plain irrelevant. One example is given in Figure 8, FIgure 8 - A uWorst-Case" SEI Grading Scenario
which is based on an actual question from the 1990 SEI
questionnaire. It shows how a sincere focus on a badly The above points by no means exhaust the potential
designed question can lead to responses that have little problems that can derive from using a fixed template of
to do with tackling real productivity problems, but have a questions to analyze a complex systems. As shown by
good deal to do with getting a better grade. the Figure 8 example, devising questions that are both

highly specific and at the same time "universal" in their
Behavioral scientists are familiar with the wide range of overall coverage of a topic is no trivial task, particularly
problems that arise when overly simplistic tests are when updates to the questions are few and far between.
applied to people or organizations, and they have a Specifically, large sets of yes/no questions
variety of sophisticated testing techniques to make sure
that the results they get are meaningful. Needless to • are hard to generalize for use with a wide audience,
say, repeatedly giving exactly the same test with exactly
the same answers to organizations whose financial life * are subject to rapid technical obsolescence,
may depend on how they respond is not one of those
techniques. Factors of this type need to be considered • tend to encourage "fixes" of very limited scope,

9th Annual National Conference on Ado Technology 1991 266

• make it easier to overlook complex problems, In the "standard" method, the data collection activity is
both rich in detail and dynamic in nature. Even if the

• can be highly unfair to groups with novel structures, analysis begins with a general model of that the system
will look like, the actual collection of data will depend to a

" can be ambiguous due to oversimplification of issues, large degree on the data itself. That is, data which shows
indications of problems or important issues may be

" can slow progress by forcing a myopic view, and pursued down to a deeper level, or perhaps taken as a
clue that further analysis is needed in some other area

* tend to use jargon that can make them cryptic. that may at first have seemed unrelated. The data
collector must play the part of a "data detective" - she

Sparse-Data Systems Analysis or he must follow leads wherever they go, search for
hidden clues, and generally try to expect the unexpected.

A curious aspect of trying to use any kind of template- If the case is simple, it may be possible to wrap it up fairly
based approach to analyzing complex systems is that quickly - but if it is a system involving people, the data
whatever approach is taken, the testing process seems collector is likely to uncover a good deal of work to do.
to remain balky or unpredictable in some way. If the
number of data points is kept low, the danger of wrongly Because it usually involves unexpected twists and turns,
identifying "bad" systems as "good" tends to become the data collected by such a process is itself rich and
high. But on the other hand, if the number of data points complex, and must be represented in formats that are
is greatly increased, the danger of wrongly identifying able to record that complexity adequately. Reports,
"good" systems as "bad" tends to grow rapidly! What is diagrams, and various tables of data thus may be used.
it about such template-based approaches that seems to
make them persistently misbehave when applied to the The analysis step is also complex, because it has the
analysis of complex systems? task of converting this rich set of data about a complex

system into some set of relatively discrete "bottom line"
Much of the answer can be found by looking at such recommendations. The data does not disappear, but it
methods in terms of information flows during the analysis must be categorized and grouped in ways that show
process. Figure 9 shows two quite different approaches what is important and what is not. In many cases, it will
to analyzing a complex system: a "standard" approach not be the "whole picture" data that decides the case -
that is typical of most systems analysis work, and the SEI in fact, it is perhaps more likely than not that it will turn
"sparse data" (or data template) approach. out to be some of the smaller, less obvious information

trails that turn out to be critical to the final decision.
A Typical Model for Analyzing Complex Systems Anyone who dealt with an unscrupulous used car dealer

knows this, although they may not discover the key clue

A complex Data Data Result or question until it is too late!
system... Collection Analysis (Simp) Ironically, a good example of this type data-rich analysis

process is the SEI Process Assessment program. In SEI
,11 .1 (worst) assessments, the emphasis on non-attribution and the

skill of the SEI process group provides an atmosphere
that tends to be rich in data and insights about the

+ aS .Ssoftware process. This information is then captured in
the form of a report that is also relatively rich in
information, and which gives the vital bottom line
recommendations needed to convert ideas into actions.

... and the SEI "Yes/No Questionnaire" Model
The irony is in how differently the system analysis

A complex Data Data Result process works for the parallel SEI evaluation program.
process... Collection Analysis (Simple) One difference simply that of the consultant-versus-

(Sparse) (Simple) ouali auditor analogy. Tax auditors tend not to have much
wsuccess at cultivating an atmosphere of open information

Vflow, however good their intentions may be. But more
importantly, SEI evaluations differ from assessments

5 s. (best) because they must convert all of the results of interviews
and discussions into 85 one-bit, yes/no questions. This
means that the final analysis process is based not on a
rich set of reports and complex tracings of problems, but

Figure 9 - The SEI Maturity Analysis Model on roughly 11 bytes of binary data, as shown in the lower

267 9th Annual Notional Conference on Ada Technology 1991

part of Figure 9. (SEI assessments also fill out this form, sheets of metal, but as we shall see in the last section of
but are under no obligation to make it the "only" result.) this paper, there are some very serious problems with

trying to use the assembly line metaphor as the basis for
An obvious response to the Figure 9 depiction of SEI analyzing software process data.) In terms of
evaluations is that it ignores the intensive interviewing sparseness, these 85 data chunks represent the ultimate
and analysis process that occurs before the data is finally extreme - they each consist of only one bit!
"wrapped up a mere 11 bytes. Isn't this simply a case
where data analysis has been moved up to a slightly Once again, it becomes an issue of statistical reliability.
earlier stage, with the SEI grading system performing If the 85 bit filter happens to "match" the crucial points of
just a minor "reformatting" of the 85 bits into SEI levels? a process, it may give good results. But if the critical

pieces of information about what is wrong (or right) with
Unfortunately, no. Raw data in systems analysis is best a process fall outside of 85 bit filter, the results will be
defined as data that arrives in independent pieces or valueless. The earlier example of how one group might
"chunks' that have not yet been strongly correlated or automate math-to-code translation while another group
compared. Individual chunks may be quite complex, but does it by hand provides a simple example of the impact
they are still raw data in that they have not been weighed of such data losses. Because the lower levels of the
and correlated against each other to identify underlying 1990 SEI template are "blind" to process automation
causes and issues. issues, it could give the human-intensive group a higher

rating simply because it produces more data of the type
As an example of what this means, take the case of a expected by the SEI template.
software maintenance process that is being analyzed in
hopes of improving its efficiency. One chunk of raw data Once the 85 bits of raw data have been collected, the
for such a system might be a "traceback" of why test actual analysis becomes an extremely simple process by
schedules are persistently underestimated for one rather systems analysis standards. No significant correlation or
specific type of change requests, but tend to be quite weighing activity is needed or appropriate, since each
accurate for other types. If this input to the analysis chunk of raw data is only one bit. Thus a very simple,
phase consisted of little more than the assertion that algorithmic "analysis" activity becomes possible. For the
10% of all test schedules were underestimated, it would 1990 SEI questionnaire, this analysis takes the form of
be very difficult for the analysis activity to determine just the seven-hurdle, five-level grading system previously
what the reason for this might be. Is it a process problem described in Figures 3 and 5. Ironically, the SEI system
that can only be corrected by replacing the current is actually too complex to reliably process its severely
estimation procedures with new ones, or is it instead stripped-down 85 bits of data, as described in the earlier
related to some aspect of the software product? If the discussions on the statistical unreliable method of using
data chunk is too sparse, it becomes difficult to correlate chains of small grading hurdles that "chop up" the test.
it with other results about the process and the product. The first part of this paper has been devoted to the issues

On the other hand, if the data chunk is rich in its level of of SEI assessments and evaluations, and especially to
will include a good the testing model (maturity levels, questionnaires, anddetail about the estimation problem, it ne grading systems) that define the core of SEI evaluations.deal of information about the type of change requests Before going on to the broader issue of the overall

that tend to cause estimation problem. By correlating direin n oe m roals of the ogra,
that information to data chunks about known problems in direction and process maturity goals of the SEI program,
the software that is being maintained, the analysis team Figures 10 and 11 provide a brief summary of many of
will be able to identify that the underestimated tasks all the points that have been brought up, phrased in terms
involve changes to one set very poorly coded modules. of the striking contrast between the outstanding work SEI
The resuling process level recommendations in such a has done in building their process assessment program,
case wouldbe that the estimation process be augmented and the curious inversion that occurs when that same
to recognize and estimate these cases more accurately, general method is made into a sparse-data grading
and that an active program of proactive redevelopment system.
of trouble-prone modules might be needed.

In the case of the SEI analysis model, the types of issues
covered by the yes/no questions are much closer to
being uncorrelated, raw-data chunks than they are to
final conclusions, since they deal with 85 individual
samples of broad issues whose exact relationship is very
much open to debate. (The SEI model attempts to
impose onder on these samples by using the assembly-
line paraigm of manufacturing cars, watches, and

9th Annual National Conference on Ado Technology 1991 268

Dr. Jekyll: SEI Assessments (19901 Mr. Hyde: SEI Evaluations (1990)

Rlaorouslv developed. The SEI process team .Results based only on SEl ouestionnaire, The
has developed an excellent program of extensive data used determine the process maturity comes
interaction and feedback. Problems in training or only from the 85 graded yes/no questions of the
the assessments themselves are collected and SEI questionnaire. Favorable results in a process
fed back to help improve the SEI training program. assessment do not ensure good test results.

WeN-received. Although most organizations and Penalties for low grades are severe. When the
people are initially reluctant to undergo process SEI system is fully in place, a company that does
assessments, SEI has done an outstanding job of poorly on the maturity test could be barred from
setting up the interview process so to encourage competing for DoD contracts, even if their record
communications without making people feel they of actual software delivery and quality is excellent.
re being singled out.

Built on an unproven maturity model. Rather
S Software enalneering technology transfer. remarkably, the five-level SEI maturity model was
Another important effect of SEI assessments is notderived from some highly effective "archetype"
that they tend to make those involved much more Level 5 organization (there was and is no such
aware of and interested in software engineering organization); nor does it represent any kind of
concepts and techniques. general consensus about good processes by the

software community; nor did SEI made any strong
Promotes uorocess awareness." SEI process effort to verify the model experimentally before
assessments also promote a general awareness making it "standard." The higher levels (4 and 5)
that many types of problems are actually process were derived entirely from anecdotal examples of
problems, as opposed to people problems. This a very small number of projects, and the SEI book
can lead to substantial short-term improvements that describes levels 4 and 5 provide very little in
by allowing different groups to stop "blaming each the way of performance data for those projects.
other" and instead focus on changing the process.

Grading is based on very sparse data. Since
" Better communications. One of the most the SEI test uses only 85 yes/no questions, all the

notable results of SEI assessment is that they complexity of a large software organization must
nearly always result in better communication be "squeezed down" into 85 bits (about 11 bytes)
between within organizations and projects of information before it is graded.

" Forward-looking aersoective encouraged. By . Random questions. Because there are so few
allowing people to freely air old grievances and questions, the SEI approach was to sample a
simultaneously work towards solving them, the variety of features in organizations. The result is
SEI evaluations tend to promote a positive, that organizations tend to respond to SEI grading
forward-looking perspective on what they can by implementing quirky process improvement
accomplish in the future. programs centered on the SEI questions, rather

than on the underlying concepts.

STeam outlook promoted. In SEI assessments,
solutions are arrived at jointly by members of . Quirky aradinq system. Because it is based on
projects, functional groups, and management. such a small number of questions, the seven-
This joint effort usually carries over after the hurdle SEI grading system can easily result in
assessment as a feeling of increase team spirit, unfair maturity classifications. As an extreme

example, an unprepared organization could
answer yes to all but two of the 85 questions and

iLon-term Imorovement. By collecting results still be classified as an "unrated" Level 1. More
tito a management-approved report, the long- ominous is the fact that organizations that home in
term prospects for improvement are improved, on key questions probably could achieve
(Note: SEt reports do not record the process.) unrealistically high SEI ratings.

Figure 10 - Major Features of SEI Assessments Figure 11 - Major Features of SEI Evaluations

269 9th Annual National Conference on Ado Technology 1991

The SEI Process Imorovement Model Question: I# you had the following situation:

The first part of this paper has been devoted to SEI Your current process ... andyour
assessments and evaluations, with a particular focus on structure "covers" current SEI
the grading system used in evaluations. It is now time to all SEI questions.., rating is great.
take a closer look at SEI's overall process improvement .Quarr
paradigm - that is, the set of goals and directions that it 1. (worst)
is trying to impart to the industry through its assessment
and evaluation programs. The question is this: Where,
exactly, is the SEI process improvement paradigm likely 4....

to take the software industry if it is fully (and presumably

correctly) implemented?

A first point that needs to be made is that SEI's process ... then why would you ever want to do this?
improvement goals cannot be fully separated from SEI's
testing program, since their testing methods have such a Institute a new process ... and then wonder
strong influence on how organizations will view process that pares back some of how far your SE
improvement. For example, the implications of sparse- your proven" activities... rating will fall.
data systems analysis also extend to process Oual
improvement. Figure 12 shows graphically how the use 1. (worst)
of a sparse-data template can significantly influence the
overall direction of process improvement for the industry.

The point of Figure 12 is when a process works well with
. (!)

the SEI testing template, its manager is going to be
reluctant to change it very much. The issue becomes
one of benefits versus risks. If the manager removes a Figure 12 - The Process Fossilization Effect
process activity that is wasteful, but which happens to
produce data that matches the 85 bit template, she might To understand how this could come about, we must first
benefit by a productivity increase of a few percent. take a closer look at just how Level 5 is defined. The
Unfortunately, she will also be aware that the wasteful questionnaire definition of Level 5 is not very helpful in
process is very "mature," and thus adds significantly to this case, since it "captures" Level 5 in only four rather
the overall chances that the next SEI evaluation will give generic questions. However, Chapter 17 of Managing
a favorable result. The risk then becomes that removing the Software Process . provides a detailed description of
the process could result in a lower SEI score - a result Level 5, and also provides helpful examples of several
that could cost her the entire contract, and possibly Level 5 process optimization forms. These forms are to
future contracts as well. Given such a situation, most be used by projects to help translate the occurrence of
managers will opt for the conservative approach of no errors in software products into specific actions to help
change - particularly if the contracts happen to be of the increase the reliability of the software process.
cost-plus-fixed-fee variety. Based on these descriptions and examples of forms, the

optimization model of SEI Level 5 is shown in Figure 13.This effect of process fossilization is a very real risk for Whenever a specific defect is identified in a software
any evaluation method that relies primarily on fixed p he xa eofh defect is identified a nd
templates for its data collection activity. (Data-rich product, the exact nature of that defect is identified and
temlats fordis avodtis c olleon ay. (fari recorded and a "traceback" (the authors' term, not S E's)
analysis models avoid this problem by being far more is initiated. The purpose of a traceback is to identify as
flexible and intensive in their approach to acquiring data.) specifically as possible where the defect originated, how
The irony of finding fossilization effects in SEI's process it occurred, the underlying (process) cause for the error,
improvement model is that its central objective is to and how the process should be changed to prevent that
optimize processes, not fossilize them. particular type of defect from occurring in the future.

As it turns out, though, the sparse-data grading system The authors have introduced the term "traceback" to
is not the only part of the SEI evaluation package that emphasize that the fundamental concept of Level 5 is
encourages process fossilization. Another significant neither terribly complex nor hard to understand. Indeed,
fossilization effect turns up in a most unexpected place: it is something with which anyone who has debugged a
Level 5, whose defining feature is that it is supposed to program can claim considerable familiarity. Because in
help "optimize" software processes! the SEI model it is applied to processes rather than

9th Annual National Conference on Ada Technology 1991 270

programs does not change its fundamental features. Nor early as the very first hurdle in the SEI grading system, in
does it change some of its fundamental limitations! which two of the twelve questions are devoted to data

collection issues. By the time Level 5 is reached, each
branch of the process has been "instrumented to the hilt"

OPTIMIZATJON REGION with a variety of metrics for measuring product quality
F and process efficiency.

Process
Branch X The result is a marvelous case of self-deception. Since

each process branch is so extensively instrumented,
defects are indeed found and methodically corrected to
ensure "clean" passages. The process is similar to a
massively debugged program that has been

2. Defect Traceback instrumented with all sorts of debug statements that
constantly churn out data that "prove" the program is

3. Defect Location 1. Defect Detection working correctly. The process (or program) is working
great, and its extensive network of instrumentation is
ready to catch any new defects that might pop up.Figure 13 - SEI Level 5 Optimization Paradigm

What all these handy measurements do not reveal is that
The problem with tracebacks is that regardless of the overall structure of the process (or program) may be
whether they are applied to programs or to processes, in an absolutely horrible mess, ready to collapse the first
they remain essentially a local, or "bottom up," approach time anyone attempts to make any serious change to it.
to optimization. Tracebacks are "local" in the sense that When viewed from the outside, the various branches of
although they may cross boundaries between activities, the heavily instrumented process (or program) may lack
they tend to provide little or no information about the a clear structure, since any explicit or implicit partitioning
overall quality or reliability of a program or process. For agreements made early in the history of the process (or
example, it is possible that the Branch X in the diagram program) are likely to have been violated. The process
represent an entire stream of activities that are actually (or program) has been optimized, all right - but only at
redundant and should have been eliminated, the expense of throwing away its ability to do anything

else except exactly the role into which it has evolved.
Even without further analysis, the observation that S EI's And it is inflexible even in that, since global optimizations
Level 5 is just traceback optimization should be a cause would involve major structural changes that could result
for concern. Although it is a vital technique for debugging in a similar type of collapse.
programs (and presumably processes), traceback by
itself is a truly terrible way to restructure a program (or This then is the fossilization effect of SEI Level 5 - the
process). More often than not, traceback optimization in very real danger that a process that uses a combination
programming results in a gradual degradation of quality, of "bottom up" traceback optimization with extensive
not an enhancement. This is mostly because its myopic instrumentation will also wind up with a highly inflexible,
focus on fixing isolated defects or bugs leads it to "bottom up" design for their software process. This is
"violate" all sorts of tacit agreements in how the program effect is further enhanced by the fact that the bottom-up
should be structured. Formerly pristine interfaces may process structure has also become an excellent "data
be violated, and key information hiding restrictions may factory" for meeting the requirements of a given sparse-
be damaged in subtle, hard-to-track ways. In the current data test template.
state of the art, software processes are generally not
clearly defined as programs, but they certainly include How can such a scenario possibly be reconciled with the
their own types of "agreements" and information sharing very explicit statements in the SEI literature that Level 5
arrangements between activities. As with programs, a is supposed to be both an innovator in process and
process optimization strategy based only on traceback is technology?
likely to cause a gradual degradation of the rules and
agreements - many of them implicit - that help a Actually, quite easily. It might be termed 'he SAGE
process to perform predictably. effect," in honor of the highly effective (but dated)

vacuum tube computer system that was a key part of our
In the case of the SEI five-level maturity model, it can national defense system until the mid 1980s. In a typical
also lead to a second type of process fossilization. The Level 5 process, each new technology will be rapidly and
SEI model requires that processes that wish to reach efficiently evaluated - but the extensive data available
Level 5 must first undergo an intensive "instrumentation through process instrumentation will then be used to
program," in which a wide variety of data is collected prove conclusively that the technology is inappropriate
throughout the software process. This trend is seen as for that process! Only technologies that result in very

271 9th Annual National Conference on Ada Technology 1991

minor tweaksto the "nearly perfect' process will be able optimization provides a number of valuable clues that
to squeak through such a daunting data gauntlet. something is very seriously wrong, but a full explanation

and quantification will have to wait till later in this paper.
Another interesting aspect of the SEI Level 5 traceback
paradigm is that there is no obvious reason why it could To provide that necessary framework, let us now turn our
not be used effectively at the earliest stages of process attention for a while to the very interesting and important
improvemenL The nominal justification for placing it in problem of global process optimization. This section of
SEI Level 5 appears to be that an abundant supply of the paper will introduce a number of concepts and terms
data is needed to make it work. However, traceback is that have been derived from a combination of actual
essentially an inductive, "detective" technique that relies experience in performing modified (non-SEI) process
more on insight and the following of clues than it does on assessments on several diverse software projects. This
does on having masses of data available to it. Indeed, experience base was combined with a subsequent
there are more than a few cases in which large masses analysis of those results to look for common themes and
of data may tend to obscure, rather than help, the tracing issue. The material is thus theoretical - but it is theory
activity, that is based on firsthand experience in analyzing "real"

projects.
The authors have found by experience that traceback is
a very helpful technique during the interview phase of a Maogoln Processes Structures with SADT
process assessment. Since assessments provide
access to a wide range of people who normally do not In discussing Level 5 of the SEI model, we pointed out
talk to each other about their work, it is very common to that there are a number of close parallels between the
encounter some set of consistent themes or problems optimization of process structures and the optimization of
that can eventually be traced back through the entire program structures. However, one clear difference
process until a specific process cause can be identified. between the two is that programs can be written out and
Clearly this is not a rigorous, numbers-first approach to analyzed on a screen or a printout, while processes are
using traceback - but it is without a doubt a very good usually nebulous entities that are far less easy to see and
way to identify pivotal problems in a software process! grasp. The first tool that is needed to discuss global

process optimization, then, is some way to cleanly and
Indeed, one could make the argument that "up front" is unambiguously write down the overall process structure.
the best location for applying traceback optimization, Once it can be seen on a screen or a piece of paper, the
since it is a excellent technique for identifying the types whole idea of performing global changes to a process
of major mismatches or missing activities that are most becomes much more concrete and understandable.
likely to occur early in the history of a software process.
The problem with using traceback only in the later stages There are probably many ways this could be done, but an
of a software process is that by that time all of the early approach devised by one of the authors (McGowan) has
indicators of major process flaws will have been covered proven particularly convenient for recording process data
over by a series of lower-level fixes. By the time in a format that is easy to use and readily understood by
traceback optimization is applied in the SEI model, it will members of the project or organization that is being
no longer have sufficient power to identify much more analyzed. The latter property is very valuable, since it
than minor, locally generated defects. makes it much easier to verify the accuracy of a process

description and explain recommendations.
A Framework for Global Process Optlmlzation The method is the Structured Analysis and Design

There is sbl one very important aspect of the SEI Technique, or SADT.4 A very brief explanation of SADT
process maturity model that needs to be discussed, and conventions may be found in Figure 14. As applied to
that is its fundamental premise. The premise is that the software process, SADT consists of boxes that describe
quality and process control mechanisms of assembly- individual activities in a process, and labeled arrows that
line manufacturing can be applied more-or-less directly represent various type of inputs (such as products,
to software processes, and that the result will surely be resources, or controls) or outputs (transformed products)
the same type of phenomenal quality and productivity that flow through the activity boxes. By definition, three
improvements that have been seen in recent decades in sides of each box are always used for specific types of
the manufacture of watches, cars, sheet metal, and other inputs (products, controls, and resources), and the
mass-produced, assembly-line products. remaining side is always used for the (transformed)

outputs of the activity. The only other major addition to
This premise happens to be wrong, but it will require a bit the rules for SADT diagrams is that boxes can be
of background preparation to explain exactly why it is expanded into separate SADT diagrams, so that an
wrong. The earlier discussion of why SEI Level 5 is more activity can be described down to whatever level of detail
likely to lead to process fossilization than to process is most appropriate for that process.

9th Annual Notional Conference on Ada Technology 1991 272

software process is imbedded. Such context diagrams
permit a better understanding of the many external
constraints that may drive or modify a software activity.

standardsllschedules
din many cases, opportunities for global optimization of a

Design process can be identified simply by inspection of an
de atabse ilf SADT process model. For example, one common

J process problem that often may be spotted by inspection
designers db tools is the presence of redundant activities. Two or moreIT -boxes in the model may be doing very similar work, but

echanisms may not be aware of it due to poor communications or
different terminology. Besides being inefficient, such

A BOX defines the key features of an redundant work activities can lower average product
individual function or work activity quality by creating more than one product with the same

purpose. As a rule of thumb, highly redundant work
activities shouid exist in a software process only when
there are specific customer requirements (e.g., the need
for very high levels of software reliability) that make them
necessary - and even then they should be very tightly
defined and monitored.

Too-Down Process Optimlzation

A DIAGRAM is a page of interconnected Since SADT process models are hierarchical, they easily
boxes used to describe a work process lend themselves to a top-down approach to process

optimization. This simply means that when looking for
ways to simplify or increase the reliability of a process,
the highest level (context) diagram is always examined
first. Because processes may in some cases consist of

More General multiple boxes even at their highest level, starting with
the context diagram is particularly important because it
always shows such processes as embedded in closed

More systems. This kind of closure at the highest level leads
naturally to analyzing the global effects of change, not
just the local effects.

After a reasonable set of optimizations have been
selected at that highest level, the optimization activity
then proceeds down to the next level of diagrams to look
for the next set of optimizations. If necessary, this top-
down optimization strategy may continue all the way to
the lowest level activities of the process. In other cases,

A MODEL is a set of related diagrams that give more it may decided to end it at a higher level if because the
details on the activities that occur within boxes benefits of lower-level optimization would be minimal.

Regardless of whether it is based on an SADT model of
Figure 14 - SADT: A Way to Picture Processes the process or some other technique, the importance of

using a top-down strategy to optimize a process cannot
Figure 15 shows an actual SADT process diagram be overstated, since problems that appear at the lower
developed during a process analysis that was performed levels of a process are often just consequences of higher
for a software maintenance project. Although such level problems. A common example of this effect is when
diagrams look complex, they are generally very readily an inadequate "up front" definition of customer needs
understood by participants in the process - after all, results in chaotic design and coding activities later in the
they are essentially just "road maps" of the activities that process. No matter how orderly the design and
normally go on within the process. The particular implementation activities may seem to be in such a case,
diagram shown is an example of a context diagram, chaotic behavior in the overall software process will
which is always the first diagram in a process model. Its persist for a very simple reason - the designers and
purpose is to show the overall environment in which a implementers are building the wrong software!

273 9th Annual National Conference on Ado Technology 1991

adjustment, Dat centers

Om~me~erwcs 4- eirtyRSvervicer

cuaoureineluiries orderss

r ml system serse odrwn, O ctomer

troublei RecoroSyste

tports ppr o e r se

M l ' Ouge a troubloble, s

systeS iownluse

sck onesreeseo nact 8 ytm rbe

Tro bile reports P answers, worerouns.
rqege rtques monthly sttus report,

Requsosns ofprore s

Figure 15 - An SADT Process Definition Diagram

Process ditherincl process dithering to produce h"'h quality products may in
some cases work, but only at the cost' of making the

If process optimization is not done top-down, it is likely to process fragile and inflexible. Since it does not truly fix
result in process dithering. Process dithering is when a major process problems, process dithering instead tends
project ox organization spends most of their time trying to to result in a process that needlessly creates and then
optimize or improve the low-level symptoms of what is tears down problems that never should have existed in
actually a high-level flaw in the process. A simple the first place. Changing such a structure then becomes
example would be a project that spends a great deal of risky, since any significant modifications may upset this
time and money to instrument and measure a particular peculiar system of checks and balances of needlessbranch of their process, only to discover later that the problems.

branch is redundant and should have been cut out
altogether. In short, an efficient process tends to be simpler, cleaner,

and more flexible towards change. And in the long haul,
Process dithering is a significant temptation in any kind those are the kinds of features that are most likely to
of process analysis, since it can provoke furious activity result in truly high-quality products - particularly for
and produce reams of "process improvement data" - all software, where flexibility and change are the name of
without having much real impact on either the efficiency the game.
of the process or the quality of the software it produces.
Top-down optimization using SADT process models is a
good way to avoid process dithering, since SADT models API - A Method for Deslaqnina Process
always map out high level relationships first.

With the background of SADT diagrams in hand, it is now
The phenomenon of process dithering also help point out time to develop a framework for analyzing the efficiency
why produc quality cannot readily be separated from the and quality of a process in a more quantitative fashion.
issue of process efficiency. A process that relies on We call the particular set of ideas you are about to see

9th Annual Nationa Conference on Ada Technology 1991 274

the Allocator-Producer-Integrator (API) method. API is The classic example of an allocator in the software
still in its early stages, but it nonetheless provides a good process would be the high-level design of a software
kernel for the idea of designing software processes, package. The design activity in that case would
rather than just reacting to ad hoc product requests. allocate various subsets of the original customer

requirements as subtasks.
In API, new software processes would be designed in a
top-down, recursive fashion. Each level of the design . Producers are responsible for receiving tasks (work
would be structured not only to meet the specific needs assignments) and transforming those tasks into
of a customer or set of customers, but also to deal specific products.
explicitly with varying levels of risk and product variation.
The API framework includes assembly-line processes, • Inteorators are responsible for re-assembling the
but only as a specialized case of the overall process results of producers into a product that meets the
design model. original task definition of the allocator.

Figure 16 shows the basic concept of dividing processes In addition to defining subtasks for producer activities,
into three major categories: allocators, producers, and the allocator activity is also responsible for creating the
integrators. allocation wall, which is an abstract communication

barrier between its producer activities. An API diagram
may either show the allocation wall explicitly or leave it as

Task Definition an assumed component, but in either case its role in
assessing the behavior of a given process is critical. A
process with a "weak" or "leaky" process wall tends to be
costly and unpredictable, and the resulting products tend
to be of poor quality. On the other hand, a strong
allocation wall tend to result in a much more predictable

Allocator process and a superior quality product.Activity
AAs shown in the diagram, an allocation wall is often (but

not always) created by building a parts interface. Thus in
a process that uses Ada, an allocation wall might be
created by designing a set of package specifications and
an accompanying set of functional descriptions.

Allocation One should not confuse part interfaces with process

Producer Producer allocation walls. Part interfaces are a product level issue
Activity Activity that deal only with how the parts will join together to

product the final working product. Allocation walls are
process level constructs whose purpose is to prevent two
or more working groups from communicating with each
other during development of a product. The success of
a product interface definition is measured by how well it
supports communication or interaction between parts of
a product. The success of an allocation wall is measured

Integrator by how well it prevents communication between parts of
Activity a process.

The confusion between the two arises in part from the
fact that one of the best ways to build a good allocation
wall is first to build a good parts interface, but our lack of
familiarity with the process perspective is clearly an

Final Product important factor also. When a designer goes down the
hallway to ask someone in another group about how they
are designing a part, we do not normally think of such an
action as a "data flow" in the same sense as we think of

Figure 16 - Allocators, Producers, and Integrators program data viewpoints. And yet from a process
viewpoint, such a conversation is very definitely a type of

- Allocatom are simply activities that are responsible data flow. Important information is being passed
for dividing up some task into two or more subtasks. between nominally separate activities, and the passing

275 9th Annual National Conference on Ada Technology 1991

of that information may in some cases have a major examples of monotonic structures, meaning that they
impact on the cost of the process and product quality, move the project smoothly towards completion. A loop

in API is non-monotonic -that is, it represent some type
Thus saying that an allocation wall is strong means that of "back pedaling" or loss of work. Figure 18 shows three
at the time the product is being developed, little or no examples of such loops, with each loop labeled by the
communication about its design occurs between its amount of lost work that results from such a loop being
producer activities. In the same way, saying that an activated.
allocation wall is weak means that very extensive
communication about the design of the product goes on
between parallel producer activities.

Lost: I month
Communication in this case is literally measured by how
many unplanned exchanges of significant technical data Lost: 2 weeks
took place. Such exchanges could take place via
meetings, memos, phone calls, e-mails, or other media, Lost: I day
but they all share the characteristic of being
unanticipated by the allocator activity when it originally
set up its subtasks. I Xno? I 1111rceIntegrator
Figure 17 shows two structures that are used to link A it Activity
allocators, producers, and integrators together. The first Cooo

structure is called a fan, and it corresponds to the type of C wek I week I week C week
allocation into parallel activities that has already been

described for Figure 16. The second structure is called
a pipe, and it corresponds to the idea of an assembly-line
style of development in which a product is passed
progressively down a "chain" of development. As with a Figure 18 - Process Loop Reduction
fan, the allocator activity in a pipe is responsible for
preparing all necessary interface definitions before the Lost work turns out to be a very useful way to measure
task is passed down into the chain of producer activities, the effectiven,-.: ,, of a software process, since it can be

applied at any level of the process and is not fooled by
locally good results. After all, if a customer rejects a

Parallel Process Structures ("Fans") product that was generated by a smooth, orderly
software process, the result is still a significant loss of
work, no matter how clean the process was. Focusing on
lost work in such a case would place the attention where
it belonged - in the initial analysis of customer needs.

llocato IntegratorJ

Activity ctlvi Activity The overall point of Figure 18 is that in terms of lost work,
there is a very strong process design incentive to shrink
loops to as small a size as possible. Note that this action
of loop reduction is not necessarily the same as loop
elimination. Loops provide a very important function in
API - specifically, they help reduce risk. Loop reduction
seeks to find a balance between risk reduction (which
pushes towards multiple loops) and process efficiency

Sequential Process Structures ("Pipes") (which pushes towards monotonic, zero-loop process
structures). Ideally, looping behavior should be kept

roduLceh Integrator entirely within the allocator activity, which is just another
IActlvlty I'IActivIlty ctivlt F Activity J way of saying that the allocator should be able to "build"

a strong allocation wall.

The need for loop reduction also helps explain why API
Figure 17 - Process Structures: Fans and Pipes places a strong emphasis on unplanned communications

between producer processes. As shown in Figure 19,
One might note that Figure 17 does not include any kind such interactions are the most common type of "trigger"
of a looping construct. In API both the fan and pipe for activating costly lost work loops.

9th Annual National Conference on Ado Technology 1991 276

Nonetheless, this concept of task factoring provides a
useful guideline for understanding how well a design or
interface specification is likely to "hold up" during the rest

I day 2 months of the software process. In some cases, simply asking
lost lost questions in terms of how stable a definition is likely to be

can provide valuable guidance as to how the allocation
wall can be strengthened. For example, prematurely
setting an interface definition simply to "have something"
is a very bad idea if the definition is to be part of an

Allocator - n W - Integrator allocation wall - but it could be a good idea if it is part of
a low-cost loop that occurs entirely within an allocator.

This completes our overview of both SADT as a process
specification and optimization tool, and of API as a tool
for analyzing processes in terms of issues such as risk
and process efficiency. Although there is a great deal
more to do to fully form these two methods into a general
process design methodology, they already provide a
useful framework for discussing process issues from a

Figure 19 - The Cost of Unplanned Interactions more global, and hopefully more quantitative, viewpoint.
Although some classes of technical interchanges such
as sharing programming techniques are rather harmless, Is Software Just an Assembly-Line Product?
any kind of a technical exchange that includes an
inadvertent or intentional allocation change is likely to
have a process impact. In particular, such exchanges By using the framework and concepts of API, it is now
usually introduce some level of looping in the API possible to discuss the issue of how assembly-line
representation. Even worse, such exchanges can easily processes such as those used to make watches
result in confusion about the "official" definition of the compare to processes used to make software. Figure 21
subtasks, resulting in even more looping behavior farther shows how a typical assembly-line process compares
along in the process. with a typical software process. Both diagrams in the

figure should be interpreted on a "per product" basis -
Some idea of the nature of the allocator activity is given that is, the product unit for the assembly line process is
in Figure 20, which points out that stability over the one new bicycle, and the product unit for the software
duration of the process is one of the key features that it process is one new software product.
must either design or uncover to ensure a smooth
process with few interactions. Although such a criterion A conspicuous feature of the bicycle example - and
sounds simple, it can be remarkably difficult in practice. indeed, of any assembly-line manufacturing process -

is the very strong allocation wall that exists between
parallel processes. Such a strong wall is possible simply

hich fe turesof because there is no negotiation whatsoever about the
this task are least "design" of each new bike. All such allocations are made
likely to change on the basis of a predefined 'emplate" that gives exact,

during production? Unique unchanging specifications for each bicycle. The overall
Original Products configuration of the bicycle assembly line may eventually

Tas -M4j be changed, but on a "per product" basis, it remains very

Ilocto stable.
Acvityr Another significant impact of the very high per-product

L -stability of assembly line processes is that their allocator
activities may be very minimal or even nonexistent. This

Shared is possible because only one "predefined" allocation
Interface Product template is needed to define all items produced by the

assembly line. How those parts will fit together in the
final integration activity is very precisely defined "up

Figure 20 - Allocation as "Task Factoring" front," so that a complex allocator activity is not needed.

277 9th Annual National Conference on Ada Technology 1991

Integration also increases in importance, since it must in

A typlcalassembly line process... effect verify the earlier work of the allocator.

Now let's look a bit more closely at the implications of the
Prodelln Fully "software is like watches" model of quality control. A

haited critical feature of assembly line processes that allows
WO/t', rO Interacto them to work smoothly is the strength of their allocation

walls, which allow each part of the process to "break out'
into a very tightly defined process pipe. Intensive,

Integrator product-only quality control works very well in such
(O Intereons per du~q tightly defined pipes, since there is no significant danger

(moderate) of another process branch "coming in" and changing the
basic definition of the product.(remplatesilo" very

low =aloator To make software follow this model, it will be necessary
costs, risks) Producer to create the same general scenario - a set of tightly

defined process pipes that are separated by very strong
allocation walls. There are two ways this might be done:

... versus a typical software process. - Increase the size and cost of the allocator. The
allocator can be given more resources with which to

Produby- Fully explore alternatives and verify work breakdowns.
product integrated This approach is more common than one might think
requirems product - it is more commonly called "prototyping." The

Proe P r main difference is that in the API framework
mam prototyping is viewed more as a technique for

temp"a!) . developing strong allocation walls for the process,
Allocai ,on Wall Eusly Broken and less as a product-oriented technique. In many

Allocator Wd- on--- Integrator cases this distinction makes little difference, but there
Osk a(otego Is don are situations where it can be significant.

(large) " m r" ou (large)
t *Decrease the complexity of the Product. Although

(Cost grows it sounds a bit strange, another way of making thewihlevel of
product risk.) Producer Producer assembly line analogy fit the software case more

closely would be to greatly reduce product variability
for a given software process. This is clearly a special
case, since most "interesting" software problems to

Figure 21 - Assembly Lines Vs. Software Processes both the DoD and the software industry in general are
not amenable to such specialization. Moreover, if a
line of software products are too well defined it begins

The situation for a software process is quite different, to be difficult to explain why the whole line is not
since software must change product to product - replaced by an automated product configuration tool.
otherwise, we would not normally call it software! Since
the magnetic media folks solved the problem of exact Neither of these two paths provides a fully satisfactory
replication of software products many years ago, approach to the problem of how to build low-defect
software processes are now left with the much more software predictably, but the first method risk reduction
difficult task of learning how to design a series of similar (Figure 22) would seem to come closer to handling the
(but always distinct) software products. full range of software problems seen in industry. The

second technique of risk avoidance (that is, of reducing
The most important consequence of product variability in process risks by focusing only on a very narrow range of
an API diagram is that it introduces risk into the structure software products) is useful only for specialized cases.
of the process - specifically, an increased risk that
allocation walls in the process will be violated. This in Interestingly enough, reducing process risks by reducing
turn means that the allocator will need to be much more products variability is similar to software maintenance. In
significant in both its size and its responsibilities, and that software maintenance, each "product" of the
the producer activities should also work to "catch" maintenance activity corresponds to a release of the
internal inconsistencies at the earliest possible time. (slightly) updated software product, and risk is

9th Annual National Conference on Ada Technology 1991 278

automatically kept at lower levels by the fact that the The SEI Evaluation Program Needs Lots of Work
majority of the code and its environment are quite stable.

If the SEI Assessment Program is the Mona Lisa of what
SEI has done so far, then the SEI Capability Evaluation

Path 1 - Risk Reduction program is what one might get by applying a hole punch
85 times on that great picture and then claiming that the

Standard Diverse resulting 85 bits of paper on the floor somehow captured

process software products the "true beauty" of picture.

A full litany of the flaws in the SEI Capability Assessment
program would be too long to list in this conclusion; the
reader is directed back to the first half of the paper, and

* Process must address diverse needs Figure 11 in particular, for all the sordid details. What we
Risk must be addressed aggressively will instead list here is a few ideas for how SEI might

avoid some of the traps they appear to have leaped into
* Automation of the process is very unlikely on the first go-round:

Path 2 - Risk Avoidance • Make the grading system is totally "up front."

• Make sure the grading system is statistically reliable.
Standard Very similar
process software products • Avoid introducing artificial barriers that needlessly

prevent an organization from making progress.

. Avoid grading structures in which missing the wrong

- A "maintenance-like" software process two questions out of 85 results in an F.

- Minimal product variation keeps risks low * Admit that technology is an issue, and test for it.
* Automation of the process may be possible

- Try hard not to favor inefficient processes

Figure 22 - Two Paths to Low-Defect Software • Make sure the test is broad enough to accommodate
complex, risky design problems.

Conclusions • Try to reward companies that eliminate processes or
parts of processes through automation

The SEI Process Assessment Program Is Great • Stop treating software as though it were watches on
an assembly line. It was not, is not, and never will be.

For anyone who has read all the way through this paper,
it may come as somewhat of a shock that the authors are • Look for whether the process design matches the
both firmly convinced that SEI has made one of the truly level of risk (variability) in the software product line.
outstanding contributions to software engineering in the
past decade. In addition to building a superbly crafted, • Develop a deeper understanding of how processes
smoothly performing process assessment program, they work, instead of focusing mostly on products.
have succeeded in getting the software industry to look
seriously at the importance of understanding and * Consider dropping yes/no questionnaires altogether.
controlling their software processes. Another SEI goal
was to provoke industry comment on their model - and * Consider dropping capability evaluations altogether.
if this small paper is any indication, they have succeeded
in that goal as well. Level 5 Is Seriously Flawed

The only suggestion for the assessment program is that The specific methods described for Level 5 lead to very
some type of structured, graphical method for recording weak process improvement paradigm, one that is
process structures would be helpful for recording the roughly equivalent to "redesigning" a program through
kind of detailed process information available during the use of debugging methods only. Level 5 needs to be
assessments. either very seriously reexamined or abandoned.

279 9th Annuol National Conference on Ado Technology 1991

Th ve-lev4e Model Is Flawed In Its Direction Physics became a true science when it began to
perceive and prove the existence of unifying themes,

The intent of the five-level SEI process maturity model is concepts that pulled many seemingly disparate pieces of
to take design intensive software organizations to new information into a few orderly frameworks. The
levels of quality and flexbility. The actuality is that the incomplete and entirely separate list of properties and
SEI model appears to strongly favor maintenance behaviors for such diverse phenomena as light, heat,
processes that have ver) narrow product definitions and magnets, lightning, batteries, and radio waves began
few reasons to change Elevating these types of shifting and merging as new insights were gained, until
effective but highly speckalized organizations to the finally a beautiful and incredibly powerful new framework
position of fndustry standai 'Is" for all types of software of electromagnetism was born, a framework that allowed
development is likely to damage both the software deep insights into the nature of the world around us and
Industry and DoD's ability to contract for any type of new, allowed us to build a world of technology and innovation.
highly complex software system. Computer science is the fledgling science of information

Such dispaities are possible primarily because the SEI and information processing, and it is a field that the
model was never rigorously proven before its use in SEI authors suspect will someday prove to be as full of deep
evaluations. One need look no further than the main insights as physics. At present we have our many little
mirror of the Hubble Space Telescope to get an idea of sets of rules and ideas and facts and figures, but we lack
the dangers of building an "ideal" testing template that a way to tie them all together. A software process is just
tumed out notto be ideal at all. The Hubble "experiment" as much an aspect of information science as is the
with building a complex system around a flawed testing transmission of data over a noisy channel, but until we
template was a very costly one, but how might it compare have perceived and proven the underlying themes that

to the cost of redesigning the entire software industry ties such disparate ideas into a unified framework, it is
around a "testing template" that may later prove to be very unlikely that we will be able to specify exactly what
seriously flawed? the "best" features of a software process might truly be.

The huge Hubble error could have been caught by Acknowledgments
making a few very simple "bottom line" checks about how We would like to thank Bruce H. Barnes of the National
well the mirror actually worked, as oppose to how well it Science Foundation for the many discussions in which
matched an abstract test model. Perhaps there are he contributed to the ideas in this paper. We would also
simple teststhat could also help SEI evaluate the actual like to thank Thomas Reid and Shawn Bohner of the
ottom liner quality and productivity performance of Contel Technology Center for their discussions and work

organizations that have used their maturity model. that helped in the writing of this paper.

The Fundamental "Assembly Line" Idea Is Wronq References

Software processes must deal with design changes 1. Watts S. Humphrey, "Characterizing the Software
every timethey produce a product. Assembly lines do Process: A Maturity Framework." IEEE Software,
not deal with design changes in every product, so they March 1988, pp. 73-79.
can use a much simpler process model. SEI has their
model backwards; assembly line processes are a subset 2. Watts S. Humphrey, Managing the Software Pro-
of the software process, not vice-versa. cess. Addison-Wesley, 1989.

The consequences of this reversal of roles is that the SEI 3. Bruce Barnes and Terry Bolliner, "Making Reuse
model persistently underestimates both the nature and Cost Effective." IEEE Software, January 1991.
complexity of the software problem. 4. David A. Marca and Clement L. McGowan, SADT

- Structured Analysis and Design Technique.
Last Remarks McGraw-Hill, 1988.

Physics provides the best model for understanding how
one goes about analyzing very complex systems. Early
physics was mostly a compilation of rules and facts with
which some results could be predicted, and others not at
all. These rles worked after a fashion, but any time a
new system was discovered, its properties had to be
analyzed anew.

9th Annual National Conference on Ada Technology 1991 280

Terry B. Bolinger Is a senior member of the technical
sa at the Contel technology Center. He works in the
sOweengineering laboratory on applied software
research bpics ranging from reuse and software
maintenance to cost-oriented modeling of software
processes. Bollinger has M.S. and B.S. degrees in
computer science from the University of Missouri at
RoD. He is a member of the IEEE.

Dr. Clement McGowan Is a Principal Scientist in the
Software Engineering Laboratory of the Contel
Technology Center (CTC) where he manages the
Process and Metrics Project. Clem joined the CTC in
May 1989 after six years as Manager of the Computer
and Infonmation Systems Department at GTE
Laboratories where he served also on task forces
dealing with software issues related to future intelligent
networks. He co-authored the recent book SADT
Structured Analysis and Design Technique (McGraw-
Hill, 1988). From 1976 to 1983 Dr. McGowan was a
Principal Consultant at SofTech, Inc. There he led
project start-up, system analysis, and high level design
using SADTfor a wide range of applications. At SofTech
Dr. McGowan also co-authored with Dr. Peter Freeman
the video assisted instruction course Software
Engineering and its Structured Methodologies (ASI,
1978). From 1969 to 1976 he was on the faculty of
Brown University where he taught its first software
engineering course in 1973. Dr. McGowan was also an
Advisory Programmer at IBM Federal Systems Division
with Dr. Harlan Mills' Advanced Programming
Technology Group. Out of that experience he co-
authored the book Top-Down Structured Programming
Techniques (Petrocelli/Charter-now Van Nostrand,
1975). Dr. McGowan holds a Ph.D. in Computer Science
from Cometl University.

Address questions about this article to either Terry
Bollinger (Internet terry@ctc.contel.com) or Clem
McGowan (Internet clem@ctc.contel.com), who both
located at Contel Technology Center, 15000 Conference
Center Drive, Chantilly, Virginia 22021-3808.

281 91h Annual National Conference on Ado Technology 1991

THE MYSTERY: WHY DO MANY OF THE VARIABLES DECLARED IN ADA PROGRAMS
MODEL CONCEPTUALLY INVARIANT OBJECTS?

J. A. Perkins
Dynamics Research Corporation

Systems Division
60 Frontage Road, Andover, MA 01810

ABSTRACT Our examination of those variable declarations
modeling conceptually invariant objects reveals

Our metric-driven analysis of Ada source for that, in most instances, there are practical
several military projects indicates that a high techniques for replacing or eliminating such
percentage of conceptually invariant objects are variable declarations. So, an obvious question is
declared as variables, and that 'run time" "Why do many of the variables declared in Ada
CONSTANTS are seldom if ever declared. More programs model conceptually invariant objects,
importantly, our analysis provides no evidence considering there exist practical techniques for
that programmers I) are giving any consideration specifying almost all such invariant objects as
to whether the declared variables model CONSTANTs?" This leads one to ask the more
conceptually variant or invariant objects, or fundamental question, "Is it important (or how
2) are being educated on how to specify important is it) to capture as part of the
conceptually invariant objects as CONSTANTs. declaration of an invariant object that the object

is indeed invariant?"
In this paper, we informally discuss what is meant
by conceptual invariance and show examples of In the opinion of the author, few programming
several programming techniques that support practices affect the ease of determining the
specifying invariant objects as CONSTANTs. Our intended semantics of the software more than
research shows that use of these programming declaring invariant objects as CONSTANTs rather
techniques would significantly reduce the number than as variables. Determining that an object has
of variable declarations in each of the projects been assigned the proper value is easy when
analyzed. We also examine specific instances compared to the effort required to determine that
where modeling conceptually invariant objects as this value remains unchanged until such time as
CONSTANTs is impractical. the object is referenced. Knowing what objects

are invariant is beneficial 1) when reasoning
either formally or informally about the

KEYWORDS correctness of software, or 2) when deciphering
(debugging) the intended operational semantics of

Software practices, software quality, Ada incorrect software. The importance of ensuring
the invariance of information when issues of

1. INTRODUCTION security or safety are involved is emphasized in
the research of the Byzantine generals' problem

Our analysis of over 2 million text lines of Ada [Lamport82] and security models [Bell76]. Yet,
source for more than 20 military projects our analysis indicates that programmers of
indicates that 1) very few "run time" CONSTANTs mission-critical software are making no attempt to
are declared in any of the projects analyzed, and ensure that variables are not used to represent
2) over 50% of the variables are modeling conceptually invariant objects.
invariant objects. In fact, many of the projects
contain no "run time" CONSTANTs and, in at least In Ada, the default mode for parameters provides
one instance, over 90% of the variable read-only access; surprisingly, this is not the
declarations model invariant objects. See case when declaring an object as either a variable[Levine90, Perkins89, Anderson88, Perkins87, or a constant. The only syntactic difference
Perkins86] for more detail on the analysis of between a variable declaration with initialization
these projects. and a constant declaration is the absence or

presence of the keyword CONSTANT. Hence,
read-write access, not read-only, can be viewed as
the default for such declarations.

9th Annual National Conference on Ada Technology 1991 282

Although our analysis indicates that many The variable declaration ITEMLV: ITEM_TYPE inside
conceptally imvariant objects are declared as declare block ITEMBLOCK results in a different
variables, ou analysis also indicates that the variable, each named ITEM._LV, for each iteration
mode of parmeters requiring read-only access is of loop 1TEM.LOOP. The life of each of these
usually defaed or explicitly specified as IN. variables, named ITEMLV, is no longer than the
The mode IN OUT is seldom specified for such time required to execute the corresponding
parameters. Write access to parameters is, for iteration of loop ITEMLOOP.
the most part, provided only when such access is
needed. In fact, it is not unusual to find A value assigned to a variable is meaningful when
projects that have almost no CONSTANT that assigned value is read from the variable on
declations; yet all parameters requiring at least one program path. For example, examine
read-only access are explicitly specified as IN mode. this second code sample:

These findings lead one to ask the following, "If function absolute
Ada required the explicit use of the keyword (value i: in value type)
VARIABLE in variable declarations, would the return nonnegativevaluetype
number of variables used to model conceptually is
invariant objects be significantly reduced?" absolute value lv: absolutevaluetype :- 0;
Granted, as the techniques in Section 3 of this -- 0 is a meaningless value since this value

paper illustrate, declaring conceptually invariant -- is never read from the variable

objects as constants instead of as variables is -- ABSOLUTE_VALUELV.

clearly more difficult than specifying the proper begin -- absolute

level of read-write access for parameters. Yet, -- absolute value if:

when coding, this author forgets to include the -- The variable AESOLUTE VALUELV is assigned
-- either the value represented by VALUE I or

keyword CONSTANT about 10 percent of the time when -- -VALUE_I, but never more than one of these
intending to declare an object as a constant. -- values on any call to FUNCTION ABSOLUTE.

if valuei >- 0
In the remainder of this paper, we assume that then
there are advantages to capturing the variance or absolute value lv : = value i;
invariance of an object as part of the declaration -- The value represented by VALUE I is

of that object. As aresult, our discussions -- meaningful, since this value is read from

focus on 1) informally defining what is meant by a -- the variable ABSOLUTEVALUELV as part of

variable modeling a conceptually invariant object elsthe RETURN.

and by avariable modeling multiple conceptual else -- value i < 0

obecs[Scto 2], 2) practical tehiusfrabsolute -value-lv :- -value i;
objcts [ol 2], pr cltchniques for -- The value represented by -VALUEI is
eliminatingvarabledeclarationsthatmodel -- meaningful, since this value is read from
ccrmcepalyinvariantobjects, andthe -- the variable ABSOLUTEVALUELV as part of
disadvantages, if any, of using these techniques -- the RETURN.
[Section 3], and 3) specific instances where using end if; -- absolute value if

CONSTANTS to model conceptually invariant objects return absolute value lv;
is impractical [Section 4]. -- The value of variable ABSOLUTEVALUELV

-- is read as part of the RETURN.
end absolute;

2. CONCEPTUALLY INVARIANT OBJECTS

Informally, we say that a variable models a In the above example, the value 0 assigned to
conceptually invariant object when the variable is variable ABSOLUTE_VALUELV during the allocation
assigned, at most, one meaningful value during the of ABSOLUTEVALUE.LV is not meaningful, since this
life of the variable, value is not read from ABSOLUTE_VALUE_LV on any

program path. However, the values represented by
The life of a variable is the time span from VALUEJ and -VALUE_1 assigned to
allocation to deallocation of that variable. For ABSOLUTE_VALUELV inside the IF statement
example, examine the following code: ABSOLUTE_VALUEIF are meaningful, since these

values are read fromABSOLUTE_VALUE_LV on at
item loop: least one program path.
loop
item-block:
declare

item lv: item type;
-- A different variable, each named ITEM LV,
-- is allocated and deallocated on each
-- iteration of ITEM-LOOP. The life of
-- each of these variables is limited by
-- the time required to execute the
-- corresponding iteration of ITEM-LOOP.

begin -- item block

end item-block;
end loop item loop:

283 9th Annual National Conference on Ada Technology 1991

Furthermare, the variable ABSOLUTE-VALUE-LV models Changing the variable declaration to a constant
a concepually invariant object, since during the declaration by simply adding the keyword
life of each variable ABSOLUTEYALUELV, CONSTANT [Section 3.2],
ABSOLUTEVALUELV is assigned at most one
meaningful value, namely either the value Creating a local block to delay the declaration
represented by VALUEI or the value represented by of the object until the value of the object is
-VALUE_I. In other words, from the time the able to be computed [Section 3.3],
variable ABSOLUTEYALUELV is allocated to the
time the variable is deallocated, only a single Converting the PROCEDURE that computes the value
value is assigned to the variable that is ever to a FUNCTION, so that the computed value can be
read from the variable. Thus, the variable used as part of the declaration of the object
ABSOLUTE_VALUELV models a conceptually invariant [Section 3.4],
object. Notice that a different variable
ABSOLUTE_VALUELV is allocated and deallocated on Creating a local FUNCTION that computes the
each call to function ABSOLUTE. The life of each value in those instances where the value to be
variable ABSOLUTEVALUELV corresponds to the time assigned is conditional [Section 3.5],
requied to execute the function ABSOLUTE.

Converting the LOOP that computes the value to a
Informally, we say that a variable models multiple FUNCTION, so that the computed value can be used
conceptual objects when there exists a time period as part of the declaration of the object [Section 3.6], or
between two assignments of meaningful values to
the variable, where the variable could be Unrolling a LOOP, so that the only value
deallocated and then reallocated without affecting assigned to an object is assigned outside the
the operational semantics of the program. We are LOOP instead of assigned on the "first" or
assuming that the deallocation of a variable "last" iteration of that LOOP [Section 3.7].
causes the value of that variable to be lost.

Each of the above techniques involving creation of
Examine the following example: a FUNCTION is useful for providing initialization

as part of a variable declaration, even when the
procedure echo variable is modeling a conceptually variant object.
is
itemjv: item _type; The subparagraphs to follow illustrate the use of

begin echo these programming techniques. The examples of
item loop: variables modeling invariance shown in these
loop-

-- The variable ITEM LV could be subparagraphs are indicative of those encountered
-- deallocated and reallocated at in our analysis of actual Ada source.
-- this point, since the current
-- value of ITEMLV has no effect 3.1 ELIMINATE THE DECLARATION
-- on the value assigned to ITEMLV
-- by GET. Our analysis indicates that it is not unusual to
get (itemlv); find conceptually invariant objects declared as
put (item...lv) ; variables that are read only once or not read at all.

end loop item loop;
end echo;

Clearly, variable declarations for variables that
Here, the variable ITEMLV models multiple are never read can be eliminated. The example
conceptual objects since the variable ITEMLV sotrce below illustrates how to eliminate a
could be deallocated and reallocated at the variable declaration if the corresponding variable
beginning of each iteration of the loop ITEMLOOP is written to only once and read only once.
without affecting the operational semantics of
procedure ECHO.

3. METHODS FOR ELIMINATING VARIABLES

A high percentage of the variable declarations
used to model conceptually invariant objects can
be eliminated or replaced by constant
declarations, by using one or more of the
following techniques:

Eliminating the variable declaration by
substituting the expression used to initialize
the variable in place of the (singular) read of
that variable [Section 3.1],

9th Annual National Conference on Ada Technology 1991 284

Original Code: This method of substituting the initializing

function number of roots expression for the singular read of the variable
(a coefficient i: in positive coefficient type; is the degenerate case of the method illustrated
b coefficient i: in coefficient type; in Section 3.2. This method of substitution can
c coefficienti: in coefficient type) also be used to eliminate constant declarations.

return number of roots type
is

discriminant Iv: coefficient type 3.2 SIMPLY ADD THE KEYWORD CONSTANT
: b coefficient i*b coefficient i

- 4-a coefficient i*c coefficient-i Ouranalysis indicates that it is not unusual to
-- This is the only place where a value fin cna y iniant obes decla as
-- is assigned to the variable aind conceptlly invariant objects declared as
-- DISCRIMINANTLV. variables that coud be declared as constants

begin -- number-of roots simply by adding the keyword CONSTANT to those
-- number ofroots case: declarations. This occurs quite frequently when
case discriminant lv is 1) the invariant object is declared using an
-- This is the only place where the value access type, or 2) the value assigned to the
-- of the variable DISCRIMINANTLV is read. invariant object is calculated in terms of global
when positivecoefficient type -> variables, parameters, or other local variables.

return two-roots;
when zero coefficient type -> In the original code of the example below, the

return one root; o
when negativecoefficient type >invariant objects declared as variables, namely

return zero-roots; DISCRIMINANLLV, TWOCOEFFICIENT_.ALV, and
end case; -- number of roots case SINGLE.ROOT._LV are assigned values based on input

end number.of_roots; parameters and/or other local variables. The
associated modified code illustrates how easily

Modified Code: these variables can be declared as CONSTANTs.
Using this simple method, many of the variable

function numberofroots declarations encountered during our analysis could
(acoefficient_i : in positive_ coefficienttype; be modified to be constant declarations without
b_coefficient_i : in coefficienttype; affecting the operational semantics of the source.
c_coefficienti: in coefficienttype)

return number of roots type Original Code:
is
begin -- numberof roots function roots
-- numberofroots case: (acoefficienti: in positivecoefficient type;
case b coefficient i*b coefficient i b.coefficient i: in coefficienttype;

- 4"a coefficient-i*c coefficienti ccoefficient i: in coefficient-type)
-- Substitute the expression used to return roots type
-- initialize the variable DISCRIMINANTLV is
-- in place of that variable. discriminant iv: coefficient type
is :- b coefficient i*b coefficient i
when positivecoefficient-type -> - 4;a_coefficient i*c coefficient i;

return tworoots; -- This is the only place where a value
when zero coefficient type > -- is assigned to the variable

return one root; -DISCRIMINANTLV.
when negative._coefficient type -> twocoefficient_a_lv: coefficient_type

return zero roots; :. 2 * coefficient_a_i;
end case; -- number ofrootscase -- This is the only place where a value is

end numberofroots; -- assigned to the variable
-- TWO COEFFICIENT_A_LV.

In the modified code above, the expression used to begin -- numberof_roots
initialize the variable DISCRIMINANT_LV (which is -- roots if:
the only place where this variable is assigned a if discriminant-lv

value) in the original code is merely substituted in positive coefficienttype

for the only occurrence where the contents of the then -- root if

variable DISCRIMINANTs is read, namely in the return roots_type'

expression of the CASE statement. Since this (thefnumber of roots -> two_roots,
expression for calculating the discriminant is (b_coefficient i
only evaluated once in each version of the + squareroot{discriminant lv))
FUNCTION NUMBEROF..ROOTS, there will be no / two_a_coefficientlv,
negative impact on efficiency. thesecond root ->

b_coefficient i
- square_root(discriminant lv))

285 9th Annual Notional Conference on Ada Technology 1991

/ two_a_coefficientlv); elsif discriminant ic
elsif discriminantlv in zero _coefficienttype

in zerocoefficienttype then -- root-if
then -- root-if single root-block:
single rootblock: declare
declare single root_1c: constant coefficienttype

single rootjlv: coefficient type :- b coefficient i
:- b_coefficient i / two_a_coefficientic;

/ two_a_coefficientlv; -- Simply add the keyword CONSTANT to
-- This is the only place where a value -- indicate that the object SINGLEROOTLC
-- is assigned to the variable -- remains invariant.
-- SINGLEROOT LV. begin -- single root-block

begin -- singlerootblock return roots type'
return rootstype' (the-number ofroots -> one root,

(the numberofroots -> one root, the first root -> singleroot_lc,
the first-root -> single rootlv, the second.root -> single rootlc);
the-secondroot -> single root lv); end single root-block;

end single rootblock; elsif discriminant lc
elsif discriminant lv in negative coefficient-type

in negativecoefficient-type then -- root if
then -- rootif return roots type'
return roots type' (thenumber of roots -> zero roots,

(the number of roots -> zeroroots, the first root > undefined root,
the first root -> undefined root, the secondroot -> undefined root);
thesecond_root -> undefined_root); end if; -- rootif

end if; -- rootif end roots;
end roots;

Modified Code: When access types are used, variables are often
used to model the pointer object even though the

function roots address pointed to by that object never changes.
(a coefficient i: in positive _ coefficientntype; the example below, the values of the objects
b coefficient_i: in coefficient_type; pointed to change, but each of the pointer
c coefficienti: in coefficienttype) variables HEATERLV, THERMOMETERLV, and

returno ti c c t DISTURBANCE_LV is always pointing to the same

is object. Again, the variables can be changed to
discriminant -c: constant coefficient_type constants by merely adding the keyword CONSTANT to

b coefficient i*b coefficient i each variable declaration.
- 4;a coefficient i c coefficient i;

-- Simply add the keyword CONSTANT to indicate Original Code:
-- that the object DISCRIMINANTLC remains
-- invariant, procedure simulate
two-coefficient a c: constant is

coefficienttype heaterlv: heater type
:- 2 * coefficient_a_i; :- new heaternode type;

-- Simply add the keyword CONSTANT to indicate -- The variable HEATER LV points to the
-- that the object TWOCOEFFICIENTLC remains -- same heater object for the entire
-- invariant. -- simulation.

begin -- numberof_roots thermometer_lv: thermometer-type
-- roots if: :- new thermometernodetype;
if discriminantic -- The variable THERMOMETERLV points to the

in positivecoefficient-type -- same thermometer object for the entire
then -- root if -- simulation.
return roots_type' disturbance Iv: disturbance-type

(thenumber of-roots -> tworoots, :- new disturbancenode type;
thefirst_root -> -- The variable DISTURBANCELV points to the

b -coefficient i -- same disturbance object for the entire
Ssquare root(discriminantic)) -- simulation.

/ two_a_coefficient_lc, begin -- simulate
the_second root -> initialize

b coefficienti (theheader i -> heater_lv,
- square root(dscriminant_ic)) thethermometeri > thermometer lv,

I two_a_coefficient ic); thedisturbancei -> disturbancelv);

schedule(the eventi -> header lv);
schedule(the eventi -> thermometerlv);
schedule(theeventi -> disturbance_lv);
run;

end simulate;

9th Annual National Conference on Ado Technology 1991 286

Modified Code: 3.3 DELAY THE DECLARATION

procedure simulate Our analysis indicates that many conceptually
is invariant objects declared as variables could be

:- new heaternode type; declared as constants by merely delaying the

-- Simply add the keyword CONSTANT to indicate declaration of the invariant object until such

-- that HEATER-LC always points to the same time as the value used to initiaize the object is
-- object. available.
thermometer_1c: constant thermometer type

:- new thermometer node type; In the original code of the example below, the
-- Simply add the keyword CONSTANT to indicate variable FRAMELV models a conceptually invariant
-- that THERMOMETER LC always points to the object. Delaying the declaration of this object
-- same object.

disturbance ic: constant disturbance type until after the value of the variable POSTONLV
:- new disturbance node type; is available allows the object to be declared as a

-- Simply add the keyword -CONSTANT to indicate constant. In the modified code, the block

-- that DISTURBANCE LC always points to the DECLAREFRAMELC_BLOCK is placed after the call to

-- same object. procedure GETPOSITION and the constant FRAMELC
begin -- simulate is declared in this block. The impact of this

initialize change on efficiency is negligible.
(the headeri -> heater-lc,
thethermometer_i -> thermometeric, original Code:
the disturbance_i -> disturbance_ic);

schedule(theevent i -> headerlc); procedure display_frame
schedule(the.eventi -> thermometer lc); is
schedule(the event i -> disturbance lc); position_lv: position type;
run; frameIv: frametype;

end simulate; begin -- displayframe
getyposition (position_file, position_l

Notice thai the changes from variable declarations frame Iv :- makeframe(positionlv);

to constant declarations in the above examples -- This is the only place where a value

have nonegative impact on efficiency. -- is assigned to the variable FRAMELV.

In the nodified code examples above, each of the end display frame;

constants, DISCRIMINANTLC, TWOACOEFFICIENL _LC,
SINGLEROOTLC, HEATERLC, THERMOMETERLC, and Modified Code:

DISTURBANCELLC, is an example of a "run time"
CONSTANT. The values for these constants are not procedure display_frame
known until run time and the values can be is
different for each allocation of these constants. position_lv: position type;

begin -- displayframe
get position(positionfile,position_lv);

"Run time" constants seldom appeared in any of the declareframelc block:
code we analyzed, even for situations as declare
straightforward as those above. Most traditional framelc: constant frametype
Von Neumann languages support constant :- make_frame (positionlv);
declarations only when the values used to -- Delaying the declaration allows

initialize those constants are known at compile -- FRAME LC to be declared as a

time. In other words, the initializing -- CONSTANT.

expressions for constants in these other languages begin -- declare_frame_lc block

must be static. This leads one to question end declare frame lo block;
whether the current text books, training courses, end dislayframe;

programming standards, and style guidelines on Ada end display-frame;

have been lax concerning educating programmers on
Ada's support for "run time" constants.
Certainly, the topic of "run time" constants in
Ada has been given little emphasis by authors such
as Booch, Barnes, and Software Productivity
Consortium [Booch83, Barnes89, SPC89].

287 9th Annual National Conference on Ada Technology 1991

3.4 USE FUNCTION TO REPLACE PROCEDURE We recommend providing both the PROCEDURE and the
FUNCTION with ide-effects, and then limiting the

Our analysis indicates that many conceptually use of these kinds of FUNCTIONs to situations
invariant objects declared as variables could be where initialization as part of a declaration is involved.
declared as constants by changing the PROCEDURE
used to initialize the object to a FUNCTION,
allowing the initialization to be part of the 3.5 USE FUNCTION TO REPLACE IF
declaration of that object.

Our analysis indicates that some conceptually invariant objects
In the original code of the example below, the declared as variables could be declared as
variable POSITIONALLV models a conceptually constants by moving the IF statement or CASE
invariant object. Changing the procedure statement containing the initialization of the object to
GET_POSITION of the original version to the a FUNCTION,thereby allowing theinitialization to
function GETPOS1TIONSE in the modified version be part of the declaration of that object.
allows the invariant object to be declared as the
constant POSTIONALLC. In the original code of the example below, the

variable STATUS_LV models a conceptually invariant
Original Code: object. The CASE statement RECEVESTATUSCASE

contains the only instances where the variable
procedure display_frame STATUSLV is assigned values, and then only one
is assignment per WHEN. In the modified version, a

positionv: position typ; function RECEIVESTATUS is created, and the CASE
begin -- displayjframe statement RECEIVESTATUS,_CASE is moved to this
get-position (positionfile,positionlv); function. The constant STATUSLC is initialized
-- This is the only place where a value is using this function.
-- assigned to the variable POSITION LV.
declare_f ramelc_block:
declare Original Code:

frame lc: constant frame type
:-make frame(position lv); procedure displaystatus

begin -- declareframelc block (station i: in station type)
is

end declare framelc_block; status lv: status-type;
end display frame; STATUSLV is only assigned a value

-- inside the RECEIVESTATUSCASE.
begin -- display status

Modified Code: -- receive_status_case:
case station i is

procedure displayfrae when satellite ->
is status lv :- satellite.receive(stationi);
positionlic: position type when ground ->

:getositionse(positionSfile); status_lv :- ground.receive(station i);
-- Changing the procedure GETPOSITION to end case; -- receive status case
-- the function GET POSITION SE allows if status_lv - off line
-- POSITIONLC to be declared as a CONSTANT. then
-- The suffix _SE is used to indicate report off-line(station i);
-- that the function GETPOSITIONSE causes end if;
-- a side-effect, namely the movement to
-- the next record in file POSITIONFILE. end display status;

begin -- display frame
declareframelc_block: Modified Code:
declare

frame lc: constant frame-type function receive status
:-make frame(positionlc); (stationi: in stationtype)

begin -- declareframelc_block return status-type

is
end declare frame lc block; begin -- receivestatus

end display_frame; -- receive_statuscase:
case station i is

Although the conversion from a PROCEDURE to a when satellite ->
FUNCTION has negligible impact on efficiency, return satellite.receive (stationi);
changes of this kind often result in FUNCTIONs when ground ->
with side-effects. The trade-offs involved in return ground, receive (station i);
deciding between declaring invariant objects as end case; -- receive_status_case
variables or providing FUNCTIONs with side-effects end receive_status;

are many. The use of FUNCTIONs with side-effects
in expressions involving more than one operation
can result in an erroneous Ada program. The
behavior of such programs is undefined.

9th Annual National Conference on Ada Technology 1991 288

procedure displaystatus Original Code:
(station_k: in station type)

is procedure locate
status ic: constant status type (elementi: in elementtype)

:- r7eceive_status (stationi); is
-- Creating the function RECEIVESTATUS allows table index lv: extended.tableindex type;
-- STATUS LC to be declared as a CONSTANT. -- TABLE INDEX LV is assigned the value of

begin -- displaystatus -- INDEX-into TABLE if ELEMENTI is found, or
if status lc - off_line -- 0 if ELEMENTI is not found.
then begin -- locate

report,off line(stationji); table index Iv :- 0;
end if; searc .loop-:

for index in table index type
end display status; loop

if table(index) - element_i
The minor impact to efficiency of an extra then
FUNCTION call or to code space of an extra tableindex Iv :- index;
FUNCTION is, in most instances, more than offset exit search loop;
by the increased modularity and the ability to end if;
specify the conceptual invariant as a CONSTANT. end searchloop;

if table indexlv - 0
then

3.6 USE FUNCTION TO REPLACE LOOP end if;
end ifat;

Our analysis indicates, in a few instances, that end locate;

conceptually invariant objects declared as Modified Code:
variables could be declared as CONSTANTs by moving
to a FUNCTION 1) the initializing assignment for function search
the object, and 2) the LOOP statement performing (element i: in elementtype)
at most a single assignment for the object, return extendedtableindex type
thereby allowing the initialization to be pan of is
the declaration of that object. This is a special begin -- search

case of the conditional assignment shown in search loop:

SECTION 3.5, where the LOOP statement acts as the for index in tableindex type
loopthen clause and the initializing assignment acts if table(index) - elementi

as the else clause. then
return index;

end if;
In the original code of the example below, the end searchloop;
variable TABLEINDEXLV is initially assigned the return 0;
value 0 and then is assigned the value of the loop end search;
control variable INDEX if ELEMENT_I is found in
TABLE. In other words, conceptually the variable procedure locate
TABLE_INDEXLV is conditionally assigned 1) the p ede loae
value of the index corresponding to the element if is
the element is found, or 2) the value 0 if the table index lc: constant
element is not found. In the modified code, the extendedtableindextype
function SEARCH is created, and the initial :- search(element_i) ;
assignment statement and the loop SEARCH_LOOP are -- Creating the function SEARCH allows
moved to this FUNCTION. In the function SEARCH, -- TABLE INDEX LC to be declared as a
the assignment statement is replaced by a RETURN -- CONSTANT.

statement. The constant TABLEINDEXLC is begin -- locate

initialized using this function, if table index-lc - 0
then

end if;
end locate;

Again, the minor impact to efficiency of an extra
FUNCTION call or to code space of an extra
FUNCTION is, in most instances, more than offset
by the increased modularity and the ability to
specify the conceptual invariant as a CONSTANT.

289 9th Annual National Conference on Ada Technology 1991

Notice that our infomal definition of conceptual elsif char lv .

invariance is not satisfactory to cover the then

conceptual invariance in the example above. Both if 31gn_found-lv

of the values assigned to the variable raise formatexception;
TABLE_INDEXLV are meaningful and both of these end if;
values are assined to TABLEINDEXLV any time signlv : minus;
ELEMENT-) is found in TABLE. However, the value 0 else
is only read from the variable TABLEINDEXLV if value-lv : 10 * valuelv
ELEMIENT_ is not found in TABLE. + digit (charIv);

end if;

sign foundlv :- true;
3.7 LOOP UNROLLING end loop convertloop;

return signlv * valuelv;

Our analysis indicates that some conceptually end convert;

invariant objects declared as variables could be Modified Code:
declared as CONSTANTs by moving the assignment of
the object outside the LOOP in those instances function convert return value-type
where that assignment is always associated with is
either the first or last iteration of the LOOP. begin -- convert
Usually wben this practice is used, the practice if endoffile (infile)
of delaying the declaration of the object must then
also be used. return 0;

end if;
In the original code of the example below, the convert block:
variable SIGNLV is assigned a value inside the declare

loop CONVERTLOOP only on the first iteration of sign_char-lc: constant character
that loop, if at all. In the modified version, - :- get-char-se (infile);

-- Delaying the declaration allows
removal ofthe calculation of the sign from the -- SIGN CHAR LC to be declared as
loop CONVERT-LOOP and the creation of block -- a CO-STANT.
CONVERTBLOCK allows SIGN_LC to be declared as a signlc: constant signtype
CONSTANT. This also eliminates the need for the :- whatsign(signcharlv);
flag SIGN_FOUNDLV. Delaying the declaration allows

-- SIGNLC to be declared as
-- a CONSTANT.

Original Code: value lv: value type
:- digit (sign charlv);

function convert return value-type -- VALUELV represents a conceptually
is -- variant object. Inside CONVERTLOOP,
char Iv: character; -- its current value depends on its
-- CHAR LV models multiple conceptual previous value.
-- objects, each of which is invariant.
signlv: signtype :- plus;
-- SIGN LV is assigned a value on the begin -- convertblock

-- first iteration of CONVERT_LOOP, convert_loop:
-- if at all. loop

sign foundIv: boolean :- false; exit when end.offile(infile);
-- SIGN.FOUNDLV is assigned the value declarecharlc_block:
-- true at the end of the first iteration declare
-- of CONVERTLOOP, and the value of charlc: constant character
-- SIGNFOUNDLV remains true from then :- get_charse(infile);
-- on. -- Delaying the declaration allows

value lv: valuetype :- 0; -- CHAR LC to be declared as
-- VALUE LV represents a conceptually -- a CONSTANT.

-- variant object. begin -- declarecharlv.block

begin -- convert if charIc -

convert loop: or charlc -
loop then
exit when endoffile(infile); raise format-exception;
get char (infile, char lv); else
if char lv - +" valuelv : 1 10 * valuelv
then + digit (char lc);

if sign found lv end if;
then end declare charlc block;

raise format-exception; end loop convertloop;

end if; return sign_lc * valuelv;
sign lv :- plus; end convertblock;

end convert;

9th Annual National Conference on Ada Technology 1991 290

The negative impact on code space is prohibitive In both the original code and the modified code.
only in those instances where large amounts of the variable PRIMELV, although modeling an
source code are associated with each iteration of invariant object, cannot be declared as a
the original LOOP. Use of this method often CONSTANT, since the single assignment for this
results in an increase in the number of brnch statements. variable appears inside the first ACCEPT statement

and then is read several times outside the scope
Again, our informal definition of conceptual of this ACCEPT statement. In the original code,
invariance is not satisfactory to cover the the variable POTENTIAL_PRIME_.LV models multiple
conceptual invariance in the example above. All conceptual objects, each of which is conceptually
of the values assigned to the variable SIGNLV are invariant. Moving the declaration of the variable
meaningful and more than one of these values are POTENTIALPRIMELV to a block inside the LOOP
assigned to SIGNLV any time a sign appears as the FINDNEXTORPOTENTIAL PRIME.LOOP would
first character in the input. However, the value indicate that the current value assigned to the variable
PLUS assigned in the declaration of SIGNLV is does not depend on the value in the previous
only read from the variable SIGN_LV if no sign iteration. However, the variable
appears in the input. POTENTIALPRIMELV could still not be declared as

a constant because of the initialization of the
Notice that the variable CHARLV in the original variable POTENTIALPRIMELV inside the second
version models multiple conceptual objects, each ACCEPT statement and the use of the variable
of which is invariant. By converting the outside the scope of this ACCEPT statement. In
procedure GETCHAR to the function GETCHARSE, the modified code, the variables NEXTPRIMELV and
and delaying the declarations of SIGN..CHAR_- LC and POTENTIAL_PRIMELV, which are used in place of the
CHAR_-.C, each of these objects is declared as a variable POTENTIALPRIMELV in the original
CONSTANT. The variable VALUELV is conceptually version, are both declared inside a block in their
variant, since the current value of this variable corresponding LOOPs, namely FINDNEXT_PRIMELOOP
depends on its previous value. and FINDPOTENTIALPRIMELOOP.

4. WHEN CONSTANTS ARE IMPRACTICAL original Code:

In Ada, not all variable declarations used to task body filter
model conceptually invaiant objects can be primelv: primetype :- undefined_prime;elcinateoeplaced bCSANTcla ati-- The only meaningful value for PRIMELV
eliminated orreplacedbyCONSTANTdeclarations. -- is assigned inside the first ACCEPT.
It is often impractical, if not impossible, to potent ia lprimelv: prime-type
declare a conceptually invariant object as a :- undefined-prime;CONSTANT any time that object is assigned its only The only meaningful values for PRIME LV
value inside a structured code segment, such as a -- are assigned inside the second ACCEPT.
block statement, accept statement, or subprogram here_lv: position,type :- undefined_posit ion;
statement, and that object is read outside the -- The only meaningful value for HERE LV is
scope of that structured code segment. In other -- assigned after immediately after the first

words, declaring a conceptually invariant object -- ACCEPT.

in a CONSTANT declaration is often impractical next-lv: a-filter type;
whenever the scope of the object is more global-- The only truly meaningful value for NEXTLVwhnerthe sltrcoofteojemnsohregobh -- is assigned once inside the inner IF after
than the structured code segment where the -- the second ACCEPT.
initialization of the object is performed. begin -- filter

accept input(number: in primetype) do
Some of the laterexamples in Section 3 prime_lv :- number;
successfully converted variables modeling end input;
conceptually invariant objects requiring herelv :- make frame (prime_lv);
"extended" scopes to CONSTANTs. However, the findnext orpotentialyprimeloop:
example source below, which is explained in detail loop
in [Barnes89], illustrates how a variable is accept input (number: in primetype) do
required whenever a conceptually invariant object potential.prime lv :- number;

initialized inside an ACCEPT statement is read end input;

outsidetheACCEPTstatement. Declaringthe write to frame(potentialprimelv, herelv);
iveeArianstecet. sidel the CE-- potentialprime to nextfilter if:conceptually invariant object inside the ACCEPT if potentialprimelv mod prime-lv /- 0

statement is impractical, since this forces the then
outside actions on the object to also be moved -- nextprime_filtertaskif:
inside the ACCEPT statement, thereby greatly if next lv - null
lengthening the time required for each rendezvous, then
Copying the variable into a CONSTANT after the next-lv : next filter-type;
ACCEPT statement offers no advantages, since the end if; -- next_primefiltertask if
variable is still visible whenever the CONSTANT is nextlv.input (potentialprime);
visible. In [Perkins9l], the advantages of assigning end if; -- potential_prime to next filter if
the value of the variable to a constant and then clear-frame (here lv);

biding the variable with a homograph are addressed. end find-next_orpotentialprime loop;
end filter;

291 9th Annual National Conference on Ado Technology 1991

Modified Code : clear frame (here ic);
end potentia..prime.iv.block;

task body filter end find_potentialprimejloop;
prime-Iv: prime-type :- undefinedprime; end declare nextIc..block;

begin -- filter end if; -- nextyprima filtertaskif
accept input(number: in prime type) do clear frame(hereIc);
prime-Iv :- number; end declare next_prime iv -block;

end input; end findnext_prime_loop;
declarehereblock lc: end declarehere lc block;
declare end filter;
here Ic :- constant makeframe(primelv);
-- Delaying the declaration allows The other two variables, HERELV and NEXTLV
-- HERE LC to be declared as a CONSTANT. declard in the original version of task FILTER,

begin -- declareherelc block are also modeling conceptually invariant objects.find next_prime-loop:loop Actually, under a loose interpretation of the
declare next_prime lv block: informal definitions, the variable NEXT_.LV models
declare- multiple conceptual objects, each of which is

nextprimelv: prime type conceptually invariant The value NULL, which is
:- undefinedprime, implicitly assigned to the variable NEXTLV when

-- Delaying the declaration does not the variable is allocated, merely acts as a means
-- allow NEXT PRIME LV to be declared for checking whether this variable has been
- as a CONSTANT because of the assigned its only "real" value, namely the next
-- initialization of this object inside spawning oftasklLTER.
-- an ACCEPT and the use of the object
b --outside the ACCEPT. In the modified version, the variable HERELC isbegin -- declare nextprime ypblock declared as a CONSTANT by merely creating an innernextyrine iv :- number; - block DECLARE_HERE_LC_BLOCK after the first ACCEPT
end input; statement, The variable NEXTLC is declared as a
write to frame (nextprimeiv, here lv); CONSTANT by creating the block
-- nextprime_filtertaskif: DECLARENEXTLCBLOCK and the loop
if next_prime lv mod primeiv /- 0 FINDPOTENTL4_PRPME_LOOP inside the IF statement
then NEXTPRIME_FILTERTASKF of the loop
declare nextloblock: FIND_NEXTPRIMELOOP.
declare

next ic: constant a filtertype The source below illustrates another example where
: new filtertype;

-- Unrolling the loop and delaying declaring a conceptually invariant object as a
-- the declaration allows NEXT LC CONSTANT is impractical. In this case, the
-- to be declared as a CONSTmiT. variable TABLE.LV is initialized inside the

executable portion of the PACKAGE body of
begin -- next_lc_block TABLE_PACKAGE. The value of the variable TABLELV

next. input ic (nextprime lv); is never written to by any of the subprograms
clear frame (here ic); inside this PACKAGE. However, it is read by all
findlotentialpime_loop: of these subprograms. The inefficiency resulting
loop from needlessly recopying the values read from

potentialprime.v_block: file TABLEFILE prevents including a call to an
potential_primeiv: prime-type initializing FUNCTION in the declaration of the

:- undefinedprime; object TABLELV.
-- Delaying the declaration does
-- not allow POTENTIAL PRIME LV Original Code:
-- to be declared as a CONSTANT
-- because of the initialization package body tablepackage is
-- of this object inside an table lv: table type;
-- ACCEPT and the use of the -- Implementation of the
-- object outside the ACCEPT. -- TABLE-PACKAGE subprograms.

begin -- potentialprime lv block ".
accept input begin tablepackage

(number: in primetype) do initializetableloop:
potential.prime_lv :- number; for tableindex in maxtableindex type

end input; loop
write toframe exit when endoffile(table file);

(potentialprimelv, table lv(table index) :- get_se(tablefile);
hereIv); end initialize_tableloop;

potentialprimeif: end tablepackage;
if (potentialprimelv

/ mod primev) In the above example, the use of an ACCESS TYPE in

then representing TABLETYPE could allow the object
nextic .input TABLELV to be declared as a CONSTANT. However,

(potential-prime-lv); this would not prevent unintentional modification
end if; -- potentialprime-if TABLE.PACKAGE by the subprograms contained in package

of the contents pointed to by TABLELV.

9th Annual National Conference on Ado Technology 1991 292

5. CONCLUSIONS [Levine90]

Our analysis of Ada source for several military Levine, S., Anderson, J. D., Perkins LA.,jjects idcates that a high percentage of "Experience Using Automated Metric Frameworks inconceptually invariant objects ae declared as the Review of Ada Source for AFATDS", Eight Annualvariables. Our research indicates that practical Conference on Ada Technology, March 1990, pp. 597-612.
techniques do exist for declaring most
conceptually invariant objects as CONSTANTs, [Perkins86]
thereby significantly reducing the number of
variable declarations contained in the Ada source. Perkins J. A., Lease, D. M., Keller, S. E.,

"Experience Collecting and Analyzing AutomatedAlthough these techniques cannot eliminate the Software Quality Metrics for Ada", Fourth Annualoccasional need to declare a conceptually National Conference on Ada Technology, March 1986,invariam object as a variable, their use results pp. 67-74.
in most variables representing either 1) permanent
storage locations having values that change over [Perkins87]
time, such as for stacks, queues, and graphs; or
2) temporary storage locations for accumulating Perkins J. A., Gorzela, R. S., "Experience Using
data inside of loops, such as for summing the an Automated Framework to Improve the Quality of
values of an array. Ada Software", Fifth Annual National Conference on

REFERENCES Ada Technology, March 1987, pp. 277-284.

[Anderson88] [Perkins89]

Perkins 1. A., "Programming Practices: AnalysisAnderson, J. D., Perkins J.A., "Experience Using of Ada Source Developed for the Air Force, Army,an Automated Metrics Framework in the Review of and Navy", TRI-Ada '89, October 1989, pp. 342-354.
Ada Source for WIS", Six Annual Conference on Ada
Technology, March 1988, pp. 32-41. [Perkins9l]

[Barnes89] Perkins J. A., "Programming Practices Relating to
Minimal Visibility and Minimal Interaction", NinthBarnes, J. G. P., Proerammin a in Ada. Annual National Conference on Ada Technology,Addison-Wesley Publishing Company, 1989. March 1991.

[Bell76] [SPC89]

Bell, D. E., LaPadula, L. J., "Secure Computer Software Productivity Consortium, "Ada Quality and
System: Unified Exposition and Multics Style", Van Nostrand Reinhold, New York, NY.
Interpretation", Technical Report MTR-2997, Mitre
Corporation, Bedford, Ma., March 1976.

ABOUT THE AUTHOR
[Booch83]

John Perkins is a member of the Software Research
Booch, Grady, Software Engineering in Ada, Development Grup at Dynamics Research
Benjamin/Cummings Publishing Company, Inc. Corporation. He has a Bachelor of Science degree
Reading, Ma, 1983. in Mathematics from Purdue University and a Master

of Science degree in Mathematics from the(Lampot821 University of Illinois. He has been involved in
the development of a math library and

Lamport, L., Shostak, R., Pease, M., "The communication software (Digital Message Device),
Byzantine Generals' Problem", ACM Transactions on translators for multi-processor scientific
Programming Languages and Systems, Vol 4, No. 3, computers (Burroughs Scientific Processor and FlowJuly 1982, pp. 382-401. Model Processor), an attribute grammar-based

translator-writing system (SSAGS) and static
analyzers for assessing the quality of Ada source
(AdaMAT). He is currently involved in defining
trust metrics for Ada.

293 9th Annual National Conference on Ada Technology 1991

PROGRAMMING PRACTICES RELATING TO MINIMAL VISIBILITY AND
MINIMAL INTERACTION

J. A. Perkins
Dynamics Research Corporation

Systems Division
60 Frontage Road Andover, MA 01810

We investigated 1) applying the programming practices
ABSTRACT proposed in [Preston89], and 2) combining these

practices with other moreunconventional programming
In this paper, we discuss applying programming practices on a stackpackage to determine how well the
practices in Ada that limit the computational Ada language supports the goal of minimal visibility
model available to the implementor of a given and minimag interaction.
package, subprogram, or task. The goal of the
specifiers of a critical segment of Ada source is The Ada language supports restricting the
to limit the implementors view to the point that computational model available to both consumers
1) only the minimal set of operators and objects and producers of a critical code segment, by
are available for use (minimal visibility), and 2) providing features such as
each available operator can operate on a minimal
set of these visible objects (minimal interaction), separate specifications and bodies for library
while still providing the ability to implement an units,
efficient version of the desired functionality.

In our research, we examined the relationship of separate compilation units for nested subunits,

these practices to 1) specific features of the Ada visibility through library access,
language, 2) the goal of minimal visibility and
minimal interaction, and 3) measurements of private and limited private type declarations,
adherence to this goal. We applied these
techniques to the implementation of derived type declarations,
a stack package.

specifications for the mode of parameters,

KEYWORDS dynamic constants, and

Software practices, security, metrics, Ada masking homographs.

1. INTRODUCTION Proper use of these features can severely limit
the consumers' and producers' ability to

Although extensive research has been performed unintentionally or maliciously provide unneeded or
conceming the benefits of code reviews, static undesired operational capabilities. In Ada,
and dynamic analysis of code, code testing, formal minimal visibility is less difficult to ensure
roos, and creating "safe subsets" of the Ada than is minimal interaction.

guage [Cohen89], far less research has been
directed at determining how best to use and the In our research, we view an implementor's failure
benefits of using, the full power of the Ada to use a provided operator (object) or interaction
language to create the minimal computational model between objects as an indication that the
required by an implementor of a critical segment implementor 1) has undesired access to an unneeded
of Ada software. operator (object), 2) has undesired access to an

unneeded potential interaction, or 3) has not
The ooncept of restricting the computational model completed the coding of the desired functionality.
through use of guidelines, instead of by removing We assume that access to the Ada library (source
Ada language features, has been suggested and object) is tightly controlled, such that no
[Preston89J. Additionally, other researchers have library unit can be accessed, on a compilation
proposed source-level programming techniques to unit by compilation unit basis, by a consumer or a
limit visibility of data items to only those producer without permission.
programs units with both a justifiable need and
proper privileges [KeUer89].

9th Annual National Conference on Ada Technology 1991 294

Our discussions focus on 1) programming techniques 2.1 REMOVE THE OBJECT PARAMETER
dt nstrict the computational model available to
consumers and producers of stacks [Section 2], and Each of Booch's implementations of the package
2) metrics that measure adherence to these STACK-PACKAGE adheres to the programming practice,
techniques and the goal of minimal visibility and "Global information to subprograms should be
minimal intraction [Section 3]. passed as parameters", by specifying the stack as

a parameter of each of the subprograms declared in
the package specification. Allowing for slight

Z PRACTICES THAT LIMIT MODEL variations, Beach's specification for each package
STACK_.PACKAGEi as follows:

Booch's implementation of the stack packages uses

numerous programming practices that affect both generic
operatioland non-operational aspects of type itemtype is private;
software quality [Booch87]. The computational type depth type is (<>);
models available to 1) consumers of the -- DEPTH TYPE is only accessed
specification of stack package and 2) producers of -- by DEPTHOF.
the body of stack package are restricted, by his
use of features such as limited private types, package stack_package is
programmer-defined exceptions, generic parameters, type stacktype is limited private;

a STACK-TYPE is declared in the
-- specification of STACKPACKAGE.

The computational model available to consumers and -- The specifications of subprograms
producers of the stack package can be further -- involving actions on a single stack.
restricted by the following practices: function topof

(the stack i: in stack type)
Removing in the declaration of the subprograms return item-type;
the stack as a paraneter in those instances
where there is a need for only one stack function depth-of
[Section 2.1]. (thestacki: in stack-type)

return depth-type;

Creating a separate library unit for each item procedure push
declared in the specification of the stack (theitem-i: in item-type;
package [Section 2.2]. the-stackio: in out stacktype);

Declaring in inner packages the subprograms and
exceptions declared in the specification of the
stack package [Section 2.31. -- The specifications of subprograms

-- involving actions on multiple stacks.

Isolating generic parameters in those instances function isequal

where that parameter is referenced by only one (the left stack i: in stack type;

(a few) of the subprograms in the specification thetu rightstacki: in stackntype)

of the stack package [Section 2.4]. return boolean;

procedure copy
Using homographs to mask visible items that are (from the stack i: in stack type;
not needed by inner structures or subunlts to the stack_io: in Out stack type);
[Section 2.5].

private -- stackpackage
Declaring and implementing subprograms that
abstract the basic operators for use by the end stack_package;
producers of the bodies of the subprograms
declared in the specification of stack package This parameterization allows the subprograms of
[Section 2.6]. any instantiation of package STACK-PACKAGE to be

used for any stack declared of the corresponding
Declaring derived types for use by the pruducers type STACK-TYPE. Thus, these subprograms are
of bodies of those subprograms specified to have useful when there is a need for only one stack or
two or more parameters of the same type [Section 2.7]. when there is a need for several stacks of a given

type STACK-TYPE. The decision of how many stacks,
The subsections to follow illustrate how an and the actual declarations of those stacks, is
increased emphasis on minimal visibility and made external to package STACK-PACKAGE. Booch's
minimal interaction affects I) the choice of what belief in the benefits of parameterization of the
source-level programming practices ar applied, primary object is apparent in his implementations
and 2) the ease of validating the functional of stacks, queues, lists, trees, and graphs.
exactness of the software.

295 9th Annual National Conference on Ado Technology 1991

Although Booch offers many different forms of
stacks, the subprograms of each of these stack -- The bodies of subprograms involving
packages passes the stack as a parameter. Each form -- actions on a multiple stacks are no
of these packages contains the subprograms -- longer needed.
ISEQUAL and COPY. Booch's stack packages end stackpackage;

support the case where only a single stack is needed,
but provide no special support for such a case. Adherence to this practice of declaring the single
Cleuy, from a purely functional point of view, no occurrence of the primary object in the body of
sp=cia suppot for the single stack case is required. the package aids in ensuring that 1) only a single

stack is declared, and 2) all uses of the subprograms
Booch never adheres to the practice, "If there is specified in package STACK-PACKAGE result in
a need to declare only one object of a given type, actions on this single stack, since the stack is
then the type for the object and the object should declared by a producer of the body of package
be declared in the body of the package (having the STACK_PACKAGE inside the body of this package,
specification that contains the specification of instead of being declared external to package
the subprograms acting on that object)". Using STACK-PACKAGE by a consumer of the package.
this practice, the specification and body for
package STACK-PACKAGE is as follows: Moreover, adherence to this practice eliminates

1) the need for access of package STACK-PACKAGE by
generic consumers who merely pass the stack as a parameter

type item type is private; to other consumers, but do not directly call any
type depth type is (<>): of the subprograms specified in this package, and
-- DEPTHTYPE is only accessed 2) the possibility that a consumer unintentionally
-- by DEPTH-OF. or maliciously declares another stack duringmaintenance

package stackpackage is after the initial validation of the software.

-- The declaration of STACKTYPE From theperspectiveoflimitingthecomputational
is moved to the body of STACKPACKAGE. model of consumers of the package STACKPACKAGE,

-- The specifications of subprograms the impact of this practice is positive. However,
-- involving actions on a single stack the impact on producers of the body of package
-- no longer have a parameter for the STACK_PACKAGE is negative, since producers of the
-- stack. subprogram bodies are provided an expanded
function topof computational model. The modes used in specifying
return itemtype: the stack as a parameter of the subprograms of

package STACK-PACKAGE dictate whether the
function depth of producers of the various subprograms have
return depth-t pe; read-only or read-write access to the stack.

procedure push Declaring the stack in the body of package
(theitem i: in item-type); STACKPACKAGE provides read-write access to the

producers of each of these subprograms. For
... instance, the producer of the function TOP-OF is

provided read-only access to the stack when the
-- The specifications of subprograms Stack is a parameter and is provided rad-write
-- involving actions on multiple stacks access to the stack when the stack is declared as
-- are no longer needed. a variable in the body.

private -- stack package

end stack package; 2.2 SEPARATE LIBRARY UNITS

package body Stack.package is Each of Booch's implementations of a stack package
type stack type is ... ; provides all the specified operations on the stack
-- STACK iTYPE is declared in for any consumer of an instantiation of these
-- the b;dy of STACK PACKAGE, packages. The consumer of the stack requiring
-- ensuring that consumers cannot only the ability to read the top element on the
-- declare stacks. stack using a call to function TOPOF is provided
stack v: stack type :- .. Other read capability (functions) such as
-- STACK v is declared in ISEMPTY, DEPTHOF, and IS-EQUAL, and write
-- the body of STACKPACKAGE.
-- This is the only declaration capability (procedures) such as CLEAR, PUSH, POP,
-- of a stack. andCOPY.

-- The bodies of subprograms involving
-- actions on a single stack are

-- implemented as before, except the

-- object representing the stack is no

-- longer a parameter.

9th Annual National Conference on Ada Technology 1991 296

The imponan__ of ensuring a read-only view of An important special case of the above programming
informAdon n iSsues n Secrity Or safte practice is the practice, "Create a separate

Byntie g thoem [amport2 , seof rty library unit containing only a unconstrained
eBsyz [& gt'pBelM6J6l],c inv ri y subtype of any type declared in the non-private

oelrkns9ll], lacng each of the items declared portion of a package specification". In Ada,

in the specificaion of ackage STACK-ACKAGE in a visibility to the parent type provides

spte l unit aftae instantiation allows capabilities that are not available when only a
epare libryunit ofte stack to li los . subtype of that type is visible. For example,

he typs, pothesck oiiii cesns tat oare visibility to an enumeration type provides access
todse types, onsu er.ms, or qptui t rn to the corresponding literals whereas visibility

gequikx by that consumer. The consumer requiring to only a subtype of this type provides no access
only fimctio TOP-OF accesses the library unit to these lterls.
comMining just this function instead of accessing
the more genral libr,,,un, Using me lFor an in-depth discussion of creating multiple
programming package, "Create a separate lrary views for objects, see [Keller89].
unit for eac imm declared in a package
specification. results in the following packages
for each of the items declared in the 2.3 NON-DERIVABLE VIEWS

Wecificamiom of package STACKPACKAGE.
Each of Booch's implementations of the stack

with secure stackpaCkage; packages adheres to the programming practice,
-- stCarE..STACf..YACKAGESAn "Declare the subprograms for an object in the

package stack typepackage is immediate scope of the type for that object".
e This practice causes derived types of the parent

subtype stack type is type to derive the associated programmer-defined
secure stackpackage .stsck _type; subprograms. The programming practice, "Nest the

declaration of each subprogram associated with a
end stack -type.package; type in an inner package (in the immediate scope

secure stack of the type)" prevents derived types from deriving
With s a package; the associated programmer-defined subprograms.
-- SECURESTACKPACKAGE is an Using this practice for preventing derivable
-- instantiation of STACKPACKAGE. subprograms results in the following specification
with item type-package;

T M I_TYPEPACKAGE contained of package STACK-PACKAGE:
-- the type used in the
-- instantiation of STACK.PACKAGE. generic
package top of_package is type item-type is private;

function topof package stackpackage is

(the stacki: in
secure_stackpackage.stackt ype) type stack type is limited private;

return item.type-package.itemtype -- STACK TYPE is declared outside

renames secure stack package.top.of; the inner packages.

end top of package; -- The specifications of all the subprograms
-- involving actions on stack(s) are

-- A separate package for each item -- encapsulated in inner packages.

-- declared in STACK-PACKAGE. package top ofypackage is

function topof

d ee ID th ice.ofC ng separat (the stacki: in stack type)

library units aids in providing control at the return item-type;

level of the library units of the consumers'
ability to read and/or write the stack. Consumers end top-of package;

not requiring write(read) access to the stack can
be denied cess to the individual library units
that provide such access. package push_package

This practice is beneficial in limiting the procedure push

computational model of consumers of items (the item i: in item-type;

originally specified in package STACKPACKAGE. It thestack_io: in out stack type);

has no impact on limiting the c mutaional model end pushyackage;
of the producers of the body of package

STACK_PACKAGE.

private -- stack package

end stackpackage;

297 9th Annual National Conference on Ada Technology 1991

Assuming that dte library unit STACKTYPEPACKAGE
is eatd asin the example in Section 2.2, procedure push
admienctohispracticeoreatinginner (theitema i: in item type;

gkags~ tsa cosume ofpackageccae ~ saottP ratia C e the_stack_io: in out stack type) ;
TAC3K_TYP-PACKAGE fr-om creating a complete view _ .

of die package SECURESTACKPACKAGE by merely
declaring a derived type of the subtype STACK-TYPE. -- The specifications of subprograms

-- involving actions on multiple stacks.
Ms practce is beneficial in limiting the function is equalfpackage (the eft stackAi: in stack type;

comnputational model of consumers of package (the right~tack_i: in tack type)
STACK..TY -PACKAGE. By itself, it has no impact thetu righ_stac i: in stack_type)
an limiting tie computational model of the return boolean;
produce of the body of package STACKPACKAGE.
In Section 2.5, bomographs of unneeded items are (from the stack i: in stack ype;
declared in die body of each of these inner (omthe stack_o: in stack_type;
p eto lmitthe computational model of the to-the-stack io: in Out stack_type);

of the corresponding subprogram. private -- stackpackage

end stackpackage;
2. 4 ISOLATE GENERIC PARAMETERS

Adherence to this practice of isolating generic
In Booch's implementation of the unbounded stack parameters eliminates viibility to type
package, the function DEPTH-OF is the only DEPTH-TYPE from the producers of the other
subprogram requiring access to the type DEPTH..TYPE. subprograms encapsulated in package STACKPACKAGE.

Granted, the information concerning the depth of
Actually, the presence of the generic parameter the stack is not likely to be sensitive. On the
DEPTH-TYPE illustrated in Section 2.1 is a slight other hand, the generic parameter ITEMTYPE could
variation from Booch's specification. The type easily represent secure information, and not all
NATURAL of package STANDARD is used to represent the subprograms encapsulated in package
the depth of the stack in his specification of STACK-PACKAGE require access to this type.
package STACK-PACKAGE. For the advantages of However, the use of type ITEMTYPE in the
DEPTH-,TYPE as a parameter, see (Perkins88]. non-private declaration of type NODETYPE causes

difficulty in isolating this parameter. SeeWhen using the programming practice, "If a generic [Keller89] for a discussion of techniques for

parameter is only accessed by a single subprogram isolating ITEMTYPE when package STACK-PACKAGE is
in a generic package, then declare the subprogram not implemented as a generic package.
to be a generic subprogram and specify this
parameter as the generic parameter of this new From the perspective of limiting the computational
generic subprogram", the specification for package model of producers of the other subprograms
STACK_PACKAGE is as follows: implemented in the body of package STACK.PACKAGE,

the impact of this practice is positive. However,
generic the impact on the consumers of the package istype itemtype is private; negative, since consumers are provided an expanded-Move DEPTH TYPE to

-- declaration of DEPTHOF. computational model. The consumer of an
instantiation of package STACK_PACKAGE can

package stackpackage is instantiate multiple DEPTMOF functions. This
type stack type is limited private; expansion in the computational model for consumers
-- STACKTYPE is declared in the of the stack can be eliminated by creating, as
-- specification of STACKPACKAGE. recommended in Section 2.2, a separate library

unit for each of the subprograms in the
-- The specifications of subprograms instantiation of package STACK-PACKAGE, where the
-- involving actions on a single stack. separate library unit corresponding to the generic
function top of function DEPTH-OF is an instantation of DETHOF.

(the stack A: in stack type)
return item-type; 2.5 MASKING HOMOGRAPHS

-- Declare DEPTH OF as a
-- generic function. In Booch's implementation of function DEPTH_OF and
generic procedure COPY of the unbounded version of package

type depth type is (<>) ; STACK PACKAGE, the input parameters are not
-- DEPTH TYPE is declared as referenced inside the LOOP statements that control
-- parameter of DEPTHOF. the transversal from one element of the stack to

function depth-of the next. In both of these subprograms, local
(thestacki: in stack type) variables of type STACKTYPE are declared to

return depth-type; support these transversals of the stacks. Booch's
implementation of procedure COPY is as follows:

9th Annual National Conference on Ado Technology 1991 298

procedure copy separate (stackpackage.copypackage)
(from the stack i: in stack type; procedure copy

to the stack_io: in out stack type) (from the stack i: in stack type;
is to the stack_io: in out stack type)
-- COPY does not call itself recursively, is

begin - copy copy: constant :- 0;
-- null from the stack if: -- Mask COPY.
if from.the stacki - null -- Declare homograph of the
then -- PROCEDURE COPY to indicate

to the stack io :- null; -- that this procedure does not
end if; -- null-fromthestackif -- call itself recursively.
copy block: begin -- copy
declare -- null from the stack if:

from stack Iv: stack type if from the-stack i - null
:" from the stack i; then

-- Last reference to FROMTHESTACKI. to the stack io :- null;
to stack 1v: stack type : end if; -- null-from the stackif

new node type' copy_block:
(the item -> declare

fromstacklv.the-item, storageerror,
next -> null); overflow: constant :- 0;

begin -- copy.block -- Mask STORAGE-ERROR, and OVERFLOW.
to the stack io :- to stackIv; fromstack lv: stack type
-- Last reference to TO THESTACKIO. :- from thestack_i;
from stack lv :- from.stack.Iv.next; -- Last reference to FROMTHESTACKI.
-- There are no references to from the stack i: constant :- 0;

-- FROM THE STACK I and TOTHESTACK_10 -- Mask FROM-THESTACK_I.
-- inside COPY LOOP. -- Declare a homograph of

copy-loop: -- parameter FROMTHESTACKI
loop -- to indicate visibility to the

-- from_stack lv null if: -- parameter is no longer needed
if from stacklv - null to stacklv: stack type
then new nodetype'

return; (the item ->
end if; -- from_stack-lvnullif fromstacklv.theitem,
tostack lv.next : next -> null);

new node-type' stack type: constant :- 0;
(theitem -> -- Mask STACKTYPE.

from stacklv.theitem,
next -> null); begin -- copy-block

to stack lv :- to stack lv.next; to the-stackio :- to_stacklv;
fromstack lv :- fom_stack lv.next; -- Last reference to TOTHESTACK_1O.

end copy loop; mask to the stack io block:

end copyblock; declare

exception -- copy to the stack io: constant :- 0;

when storage-error -> -- Mask FROMTHESTACKI.

raise overflow; -- Declare a homograph of

end copy; -- parameter FROMTHESTACKI
-- to indicate visibility to the
-- parameter is no longer needed

InAda, homographs can be declared i an inner begin -- mask tothe stackioblock
structureto prevent direct referenccS to itemS fromstack Iv :- from_stack lv.next;

required only by an outer stucture. Using the -- There are no references to

practice, "Declar a homograph of a visible item -- FROM_THE_STACKI and TOTHESTACKIO

f ireferences to the name of that itCm arc -- inside COPYLOOP.

not reqired", results in the following copy loop:

implementation of procedure COPY: loop
-- from_stack lv_null if:
if from-stack lv - null
then

return;
end if; -- from_stack-lv-null if
to stack iv.next :
new node type'
(the-item -> fromstack lv.the item,
next -> null);

to stack iv :- to stack lv.next;
from stack lv :- fr0om.stack_lv.next;

end copy loop;
end masktothe-stackioblock;

end copy block;
exception -- copy
when storage error ->

raise overflow;
end copy;

299 9th Annual National Conference on Ada Technology 1991

Adhertnce Ithis prcce ofdecaring masking -- The computational model available
m os aids in ensuring that successful -- to the producer of the body of

C=Ma ofprocedure COPY impiesthal) -- procedure copy has been restricted
pwcedue COPY is never called inside COPY, and2) -- by the producer of the package
parameters FROM_THE_STACKIand -- specification for package STACKPACKAGE,

THESTACKIO C never referenced inside the -- by the producer of the package
kP -- body for package STACKPACKAGE, andloop COPYLOOP -- by the producer of the package

-- body for package COPYPACKAGE.e homographs of the exceptions OVERFLOW procedure copy
ndSTORAGE__ERROR and the type (from the stack i: in stacktype;

STACK..TYPEM e declaedto limit direct references to the stack_io: in out stack type)
to these items in the inner most block and LOOP of is separate;pr c opY.

end copypackage;

In the above case, the producer of the body of Adherence to this practice of declaring masking
procedure COPY is using homographs to limit t ho ographs aids in ensuring that successful
computational model available inside inner regions of compilation of procedure COPY implies 1) no
procedure COPY. In the example below, the references to unneeded items from package
producers of the body of package STANDARD, 2) no references to the other
STACK-PACKAGE and using homographs to mask subprograms declared in packagei ntneeded bytheproducer of the body o uporm elrdi akg
pcedureSTACK_PACKAOE.COPY_PACKAGE. STACK_PACKAGE, and 3) no references to theCOpy. generic parameters of package STACK-PACKAGE.
package body stackpackage is The homographs of packages STANDARD,

-- Mask everything in package STACK-PACKAGE, and COPY_PACKAGE are
-- STANDARD except declared to prevent qualified references to the items
-- BOOLEAN, declared in these packages. Adherence to this practice
-- CONSTRAINTERROR, and greatly increases the likelihood that an unintentional
-- STORAGE _ERROR. reference to an unneeded item is detected at compile
-- Declare homographs to hide time.
-- unneeded items in STANDARD
-- from the producers of the The declaration of these masking homographs has no
-- inner packages specified in effect on the consumers of package
-- STACK PACKAGE. STACK_PACKAGE.
standard,
integer,
natural, The use of the universal integer type and 0 in
positive, declaring homographs is merely a matter of
character, convenience. When non-numeric objects are

involved, this appears to be a reasonable choice.
task error, When numeric objects are involved, type BOOLEAN
stackpackage: constant :- 0; and false can be used. In our library, we have,

solely for the purpose of declaring these masking
package top_of package is separate; homographs, package HIDE.PACKAGE containing the
package copyyackage is separate; private type HIDE.TYPE and the constant HIDE. We

end stackpackage always declare masking homographs as constants.
separate (stackpackage) Creating masking homographs for operators such as
package body copypackage is "+" and "." is more difficult; however, such

-- Mask everything visible homographs are valuable in limiting the run time
-- to COPYPACKAGE except model of the producers. The homographs for such
-- COPY, operators are usually implemented to raise a run time
-- STACK-TYPE, exception to indicate that the call to the operator is
-- NODE-TYPE, unintentional or unexpected.
-- STORAGEERROR, and
-- OVERFLOW Combining the examples above, the computational
-- Declare masking homographs model available to the producer of the body o
-- for visible items not procedure COPY is limited by the producers of 1) the
-- needed by COPY. specification of package STACK PACKAGE, 2) the
boolean, -- standardpackage body of package STACK_PACKAGE, 3) the body
constraint error, of package COPY_PACKAGE, and 4) the body of
depth-type, -- generic parameters procedure COPY.
item-type,
top-of, -- subprograms
is-empty,
depth-of,
is equal,
push,
pop,
clear,
underflow, exceptions
copypackage: constant :- 0;

9th Annual National Conference on Ada Technology 1991 300

2.6 ABSTRACT BASIC OPERATORS Adherence to this practice of abstracting basic
operators eliminates the producer's need to rely

In Booh's implementation of the unbounded version on the non-private type STACK-TYPE view of the

of the package STACK-PACKAGE, the producers of the stack object. The producer of the body of
bodies fthe subprograms are provided direct procedure COPY relies instead on a private view of

access to the underlying data structures for types type STACKTYPE, the constant EMPTYSTACK, the

STACK-TYPE and NODETYPE. Using the programming functions MAKE, THEJITEM, and NEXT, and the

practice, "Provide subprograms (in the body of the procedure NEXT, which are provided by the producer

encapsulating package) which duplicate the basic of the body of package STACKPACKAGE. Compare the

operators of each non-private type", allows the above implementation of procedure COPY to the

following implementation of the body of procedure implementation in Section 2.5.
COPY:

The declaration of these subprograms for the basic

procedure cy operators has no effect on the consumers' view of

(from-thedstack i: in stack type; package STACK-PACKAGE. Of course, creation of

to the stack io: in out stack type) these subprograms has a negative impact on both

is code space and run time performance.
begin -- copy

-- nullfrom the stack if:
if from the stacki - emptystack 2.7 DERIVED TYPES
-- Conatant EMPTYSTACK replaces null.
then In Booch's implementation of the bodies of

to the stack io :- emptystack; function IS_EQUAL and procedure COPY, type
-- constant EMPTY STACK replaces null. STACKTYPE is used in the declaration of both

end if: -- null_fromsthe_stack if Stack parameters. Using the programming practice,
copy block: "Declare (in the body of the encapsulating

from_ stck _v tacktype package) derived types of the parent type and
:-fromthe stacki; provide the necessary operators with the

to-stack lv: stack type : appropriate functions signatures, whenever
make (theitem(fromstacklv), multiple parameters for a specified subprogram (in

empty stack); the specification of the encapsulating package)
-- Function MAKE replaces NEW. ae of the same type", the implementation of the
-- Function THEITEM replaces .the-item. body of procedure COPY is as follows:
-- Constant EMPTY STACK replaces null.

begin -- copyblock separate(stackpackage.co,.package)
to the stack io :- to stack iv;

prde cp

fromfLstack lV :- next(from-sakl) procedure copy
fr otck~iv :- fomtackv); (from the stack i: in fromstack type;

copy loop: -- FROM STACKTYPE replaces STACKTYPE.
loop to the stack.io: in out tostack_type)

-- fromstackIvnull if: -- TO_STACK__TYPE replaces STACKTYPE.
if from stackjiv - empty stack is
-- Constant EMPTY-STACK replaces null. begin -- copy

then -- nullfrom the stack if:
return; if from the stack i - from empty stack

end if; -- from_stack_lv_null if -- FROMEMPTY STACK replaces EMPTYSTACK.
next (tostack_lv, then

make(the_item(from_stack lv), to the stack io :- to empty stack;

empty-stack); -- TOEMPTY STACK replaces EMPTYSTACK.
-- Procedure NEXT replaces .next. end if; -- null_from the stackif
-- Function MAKE replaces NEW. copy block:
-- Function THEITEM replaces .the item. declare

-- Constant EMPTYSTACK replaces null. fromstacklv: fromstacktype
to stack lv :- next (to stacklv); :- from the stack i;
---Function NEXT replaces .next. -- FROM STACKTYPE replaces STACKTYPE.

from stack iv :- next(from stack lv); tostack Iv: to stack type
-- Function NEXT replaces .next. to_make(from the item(from_stack_lv),

end copyloop; toemptystack);

end copyblock -- TO-STACK TYPE replaces STACKTYPE.
-- The exception STORAGEERROR -- TO MAKE replaces MAKE.

-- is handled by function MAKE. -- FROM THE ITEM replaces THE_ITEM.
end copy; -- TOEMPTYSTACK replaces EMPTYSTACK.

begin -- copyblock
to the stack io :- to stack lv;
from stacklv :- from next

(from_stack lv);

301 9th Annual National Conference on Ada Technology 1991

procedure to next

copyjoop: (to.stack_±o: in out tostacktype;

loop tostack~i: in tostacktype);
-- from stack lv-null-if: o . st
if from stack-iv - fromemptystack
-- FRON3M PTYSTACK replaces procedure copy

EMPTYSTACK. (from the stack i: in from stack type;

then to the_stack_io: in out to_stack_type)

return; is separate;

end if; -- fromstack.lv null if
tonext(to stack Iv, -- The version of COPY having two

tomake(fromtheitem -- parameters of the same type
(from_stack lv), -- is implemented by calling the

to-emptystack); -- version of copy having the

-- TONEXT replaces NEXT. -- two parameters of different

-- TOMAKE replaces MAKE. types.

-- FROM TIlE ITEM replaces THE ITEM.
-- TO_EMPTYSTACK replaces EMPTYSTACK. end copyJackage;
to_stacklv :- to next (to_stacklv);

-- TO NEXT replaces NEXT. Adherence to this practice aids in ensuring that
from stack lv :- fromnext the producer of the body of procedure COPY does

(fromstack_lv); not unintentionally or maliciously perform an
-- FROMNEXT replaces NEXT. action on the wrong stack. The function signature

end copybloop; for the function FROMTHE_STACK ensures that itemsend copy block;

-- The exception STORAGEERROR are read from the object pointed to by the
-- is handled by function TO_MAKE. variable FROMSTACKLV and not from the object
end copy; pointed to by the variable TOTHESTACKLV. The

function signatures for the other subprograms ensure
The producer of the body of package that the transversals of the two stacks are not confused.
COPY-PACKAGE 1) declares type
FROM-STACKTYPE and TOSTACKTYPE as The declaration of these derived types has no effect on
derived types of type STACK_TYPE, and 2) specifies the consumers' view of package STACK-PACKAGE.
and implements (using the abstracted
basic operators of type STACK-TYPE) the In HMfIinger's investigation of Ada, he
subprograms FROMEMPT._STACK, recommended the removal of derived types from the
FROMNEXT, FROM_THE_ITEM, language [Hilfinger I]. Our research indicates
TO_EMPTY_STACK, TOMAKE, TO-NEXT that derived types are a valuable mechanism for
(function), and TONEXT (procedure). The example limiting the interaction between multiple objects
below outlines this implementation of package of identical structure. In our examination of a
COPY-PACKAGE. tree package supplied by the Air Force [BSTS89],

we illustrated that important properties

separate (stack-package) concerning the integrity of the tree can be
package copypackage is ensured by declaring derived types of the tree

type for the parent node and child node of the
type from stack type is new stack type; ree during grafting (insertion). Grafting
type tostack type is new stack-type; requires different fields to be updated in the

parent node than in the child node. The declaring

function from_empty_stack of derived types prevents the updating by the
return from-stacktype; child of a field required by the parent but not

function from next required by the child and vice versa. For
(from stack-i: in from_stacktype) instance, the number of children can be updated in

return from_s-tacktype; the parent node but not in the child node. For
more details conceming this implementation of the

function to-emptystack tree package, see [SDI90].
return to_stack type;

function from-theitem
(fromstacki: from stack type)

return itemtype;

function to make
(toitemi: in item-type;
to_stack.i: in tostacktype)

return to-stack type;

function tonext
(tostacki: in tostacktype)

return to stack-type;

9th Annual National Conference on Ada Technology 1991 302

3. METRICS FOR VISIBILITY AND INTERACTION REFERENCES

The degree to which the software meets the goal of [Booch87]
minimal visibility and minimal interaction can be
measured 1) indirectly, by measuring the Booch, Grady, Proramino in Ada.
proporion of times the proposed programming Benjamin/Cummings Publishing Company, Inc.
practices are used when use of such a practice is Reading, MA, 1987.
possible (e.g. What propotion of the package
specifications containing a declaration of a type [BSTS89]
and operators on that type contain the declaration
of these operators in inner packages); or RFP F04701-89-R-008, Part IV, Section L, Annex B,2) dily, by measuring a) minimal visibility, pp. 93-98, USAF/AFSC HQ Space Systems Division,
in terms of the proportion of items that are Los Angeles, CA.
visible to a unit that ar referenced by that unit
and b) minimal interaction, in terms of the [Cohen89]
proportion of non-keywords in the source that are
not able to be replaced, one occurrence at a time, Cohen, N., Carre, B. A., McHugh, J., Preston, D.,
by another non-keyword without causing the library Smith, M. K., Van Scoy, R., Wichmann, B., Panel
unit to become uncompilable. on Safe Subsets of Ada, TRI-Ada 89, October 1989,

pp. 244-254.
Both forms of metrics are important, since the
indirect measures have related actions that [Hilfmger8l]
improve the scores for the direct measures, and
the direct measures indicate how close to minimal Hilfinger, P. N., Absaction M hanismand
is the computational model provided to the LalglAngg Dig, The MIT Press, 1983.
producer of a unit. fKeller89]

4. CONCLUSION Keller, S. E., Perkins, J. A., O'Leary, K.,
"Layering and Multiple Views of Data Abstraction

Although, for most applications, is it impossible in Ada: Techniques and Experiences", TRI-Ada 89,
to completely achieve minimal visibility and October 1989, pp. 342-354.
minimal interaction using the Ada language, our
research indicates that there exists practical [Perkins88]
programming techniques for greatly reducing the
computational model available to producers and Perkins J. A., "The Myth: Anyone Can Code the
consumers of critical segments of Ada source. Software If the Requirements and Design Are ...",
More importantly, our research indicates that TRI-Ada 88, October 1988, pp. 258-273.
important properties relating to exactness can be
ensured by limiting both visibility and [Perkins9l]
interaction at the level of the Ada source.
Often, the properties ensured by these techniques Perkins, J. A., "The Mystery: Why Do Many of the
are difficult to validate during the testing Variables Declared in Ada Programs Model
and/or operation of the software. For more Conceptually Invariant Objects?", Ninth Annual
detailed information concerning the practices National Conference on Ada Technology, March 1991.
presented here and other practices that can be
used to limit the computational model of [Preston89]
implementors, see [SDI90]. Preston, D., "Panelist Viewpoint: Ada and the
Metrics have been defined that measure important Trusted Computer System Evaluation Criteria",
aspects of visibility and interaction. Static TRI-Ada 89, October 1989, pp. 247.
analysis tools to automate the collection of these
metrics directly from the Ada source could be built. [SDIO90]
We have on going efforts in both of these areas. Trusted Software Development Methodology RC= -

Draft 2, Appendix B, Strategic Defense Initiative
Organization, Washington, D.C., January, 1990.

ACKNOWLEDGMENT

The research on programming practices discussed in
this paper was performed by Dynamics Research
Corporation under contract SDIO 84-88-C-0020,
which was awarded to GE Aerospace by the Office of
the Secretary of Defense Strategic Defense
Initiative Organization, Pentagon, Washington D.C.

303 9th Annual National Conference on Ado Technology 1991

AUTHORS' INDEX

NaM Page Name Page

Archer, Thomas S..................................... 50 Li, Wei... 107
Arden, William.. 69 Lobsitz, Richard M 223
Barrwe, Wanda.. 32 Lukman, Joseph T 200
Bassiouni, M .. 16 Martin, David.. 249
Berggren, Peter Miller, William L.. 9
Bishop, Michael..................................... 206 Miriyala, Shakuntala................................... 25
Blankenship, P 181 Moore, Freeman L 170
Bollinger, Terry B.................................... 255 Mulholland, Sandra L 188
Brown, David.. 174 McGowan, Clem..................................... 255
Bumnham, C. Alan..................................... 87 McKay, Amber 152
Chester, Rowena 0 39 McKay Charles 206
Chiu, M.. 16 Newsome, Tina L 160
Clark, Peter G 223 Papanicolaou, Basil 45
Coleman, Don M...................................... 135 Park, E. K... 72,164
Disbrow, David 249 Pederson, Richard 152
Elrad, Tzilla... 25 Perkins, John A 282, 294
Fitzgerald, Jr., Joseph C 114 Pfleeger, Shari L..................................... 114
Gerardi, Robert D..................................... 87 Piper, JoAnne... 32
Gottefbam, Donald 120 Reid, Thomas F....................................... 243
Gray, Lewis.. 55 Rogers, Kathy 206
Henry, Sallie.. 107 Royce, Walker E................................ 174,181
Hess, Richard 233 Rusis, E ... 181
Ho, Peter .. 87 Schaefer, Cadr....................................... 142
Hooper, James W...................................... 39 Schettino, John 100
Howden, Bill ... 128 Selig, Calvin .. 107
Joiner, 11, Harry 87 Skove, F. A... 72
Kang, C. S ... 72 Spegele, UISMC, J. J 164
Kitaoka, Beverly String, C. Robert...................................... 223
Kozbwski, Catherine 100 Thompson, J ... 16
Krous, Ella L.. 150 Walker, James E 238
Lawhead, Pamela B................................. 233 Wieand, Bruce 128
Leach, Ronald J..................................... 135 Willis, B .. 181
Levy, Steven H 92 Zeil, Steven J.. 80

9th Annual National Conference on Ado Technology 1991 304

Portability and Ada ... Some Suggestions

David E. Johnson

UNIVERSITY OF MISSISSxPPI

Abstract
This paper examines the portability of programs writ- -- splay Device

ten in Ada by discussing recent experiences in developing
a large software package in Ada on an IBM 370 and then Statistical/
porting it to a Sun 3/60. The paper examines potential Input File Plot Line Printer
pitfalls in portability, especially in dealing with I/O is- Package
sues and word size. Finally, the results of the porting of Dataet
the software package are examined closely and evaluated Definition File Output File(s)
critically in a case study environment so that the de-
sign problems can be avoided in future projects by every
member of the software development team. Figure 1: Statistical/Plot Package Interfaces

1 Introduction

Ada was designed with portability in mind, how- The MVS dataset input file format is shown in

ever, some features of the language may frequently Figure 2. Each dataset contains all possible fields of

be used in non-portable ways. The most common data on which processing is possible. The header

approach taken in developing a portable applica- is a four character string that identifies the data

tion entails extracting the machine-dependent rou- set. The length is the length of the data set (in-

tines and data-types into separate packages which cluding the header and length fields). The data

are then used by the machine-independent ones. field contains the data for each field in the record

A software engineering class at the University of whose structure is defined in the Dataset Defini-

Mississippi recently developed a statistical software tion File.

package using Ada. Details of its design as well Figure 3 shows the format of the dataset defini-

as portability problems encountered during devel- tion file (DDF). To retrieve a field from the file, the

opment are discussed below, desired field ID is looked up in the DDF to ob-
tain its data type and its start offset in the input
data file data field. Then the desired field may be

2 Overview of STATPLOT extracted. Note that the record structure as well as
the field types and sizes may change at any time.

Our project was to develop a statistical library for These record formats pose problems in writing Ada
use in a larger project. This library was to be programs. Ada is a strong, statically typed language
"with"ed (linked) in by higher-level routines written and handling MVS datasets would require use of
by other development teams whose projects were not unchecked conversions and other non-portable fea-
disclosed to us. tures of Ada thus producing an undesirable program.

The original system requirements specification de- MVS Data-sets were to be sent to the statistical
scribed a package which was to be run on an IBM routines for analysis and then a resulting data-set.
MVS-based system. The package was to take an and/or value would returned. The data-sets con-
input file and a dataset definition file as input, pro- tained all fields collected from the source and each
cess the data as needed, and send the output to the statistical routine was responsible for extracting the
screen, a printer, or a file. (see Figure 1) specified fields.

INPUT FILE DATASET dependent Ada package and called "Mystical I/O"
since its functionality and interface were unknown.

D et I Also, with time constraints placed on us by the sys-
Datmt 2 - Header Length I Dt tem requirements, we could develop our own file for-

mats for internal testing. Then, at delivery time
we could provide an untested MVS I/O package for
datasets as well as our test setup.

Ada packages allowed our I/O data format to be
hidden from the calling procedure as well the the ac-

Figure 2: Input File Format tual user. The other development teams only needed
to know the generic interface to the I/O Package.
Another benefit of I/O isolation is the data file for-
mat may change without affecting the higher level
routines.

Dataset Header I Since I/O was separated, the other teams concen-
Delinition Field ID Type Starts trated on their algorithms and did not worry about

a specific data format. This was extremely nice for
the I/O team because contractor requested changes

Field ID [Type Starts to the data file formats could be done easily.Output of the statistical routines could be sent
to a printer, the screen, or a text file. To isolate
system dependency issues surrounding device han-

Figure 3: Datset Definition File Format dling, each statistical routine placed its output in
a text file whose name was obtained via a call to
the I/O package routine NEW.FILE.NAME. This
routine took the name of the calling procedure as a

Our actual development environment was to be parameter and returned a unique file name consist-
IBM CMS-based system but since Ada has features ing of the procedure name and the time of day as an
encouraging portable coding, this environment was eight digit quantity.
deemed satisfactory. After all output was generated, another I/O rou-

The design specifications were divided among de- tine, SENDFILETO.DEVICE, wass called to send
velopment teams who would be responsible for fur- the output file to the appropriate device or leave
ther design refinements and code development for it in a file. Only this device output routine knew
each particular segment of the design. Each team the specifics of interfacing to the appropriate device.
was required to research the appropriate algorithms Thus, when porting the I/O package to another sys-
and choose the best, based on the requirements. Af- tern, the output handling could be modified without
ter a preliminary research period, all groups met to affecting any statistical routines.
discuss the overall design.

3 Initial Design Decisions 4 Further Designs
The production environment for this project was

Early planning focused on how to interface Ada to moved from MVS to a UNIX system due to the in-
MVS datasets and how these could be simulated in troduction of the IBM RS/6000 very late in the de-
CMS. It was assumed that in actual use the dataset velopment process. The MVS data-sets also became
structure would change infrequently and thus might obsolete because UNIX does not provide file types
be feasible to place the data definition statically minto such as data-sets, index-sequential, etc. All UNIX
the Ada package as a record. However, it was later files are just a collection of bytes.
noted that we could not guarantee that Ada data- To simplify the file interface to the statistical rou-
types would match up correctly with the MVS data. tines, the calling procedures were to pass only data

With these problems in mind, as well as the time which was necessary for the analysis in a text, read-
delay of the interaction with the project coordina- able file. This data would be processed and if neces-
tors, the I/O routines were separated into an in- sary, returned in a newly-created text file. Although

we continued development under CMS, we used this
scheme in hopes that porting the final code to UNIX
would be extremely simple. Data Files

Due to the file format changes implementation was CLOSE
simplified tremendously. The I/O routines could COPY.RECORD
now return all values found in each record to the CREATE
caller for processing. However, one problem still ex- DELETE
isted: values in the data files may be of different END.OF.FILE
tyjes. Each statistical routine needed to be able to GET.CURRENT.RECORD.NUMBER
deal with calls containing various types. It was re- GET.RECORD
alied, though, that by converting all data in the GETRECORD.FIELD
file to LONGFLOAT's, no data precision would be MERGE.TWOFILES.TO.ONE
lost. This also allowed the other routines to deal only OPEN
with the LONG.FLOAT's which simplified their im- PUT.RECORD

plementation greatly. PUTRECORDFIELD

The final I/O design provided functions (see Log File
Figure 4) to read and write records (a line of CLOSE.LOG.FILE
values in the file), open and close files, cre- OPEN.LOG.FILE
ate file names for temporary files, and mainte- PUT.LOG.MESSAGE
nance of a error logging file. The read and
write record procedures, GET.RECORDFIELD Output Files
and PUT.RECORD.FIELD, read/wrote from I- SEND.FILE.TO.DEVICE
4 fields depending on the higher level require-
ments. Each statistical routine "knows" how many Miscellaneous
fields it is designed to work with (based on the NEW.FILE.NAME
requirements specification) and issues a call to
GET.RECORDFIELD with the number of ar-
guments equal to the number of fields allowed. Figure 4: STATPLOTJO routines
GET.RECORD.FIELD is overloaded to handle this
type of interface and makes the code extremely easy
to follow.

The open function would read the file header,
record the record format and return the number of
fields present to the caller which could check for
problems. Figure 5 shows an outline of the algo- STATPLOTJO.OPEN(...);
rithm used in each statistical routine to process an
input file. while not STATPLOT.O.END.OFFILE loop

begin - - DATA ERROR block

5 I/O Package Advantages STATPLOTJO.GETRECORDSFIELD(x, y);
exception

" Calling functions were not aware of file struc- when STATPLOTIO.DATA.ERROR ->

ture STATPLOTIO.PUTLOG.MESSAGE(...);
end; - - DATA ERROR block

Each statistical routine dealt only with the ab-
straction of the input file having one or more - - DO PROCESSING - -
fields. The request issued by the routine to read
a record conveyed the number of fields of inter- end loop;
est. Since the interface is very simple and has
no direct relationship with the file structure, the STATPLOT.O.CLOSE(STATPLOT.O.INFILE);
input file structure could be changed without
affecting any of the calling procedures. Figure 5: Generic STATPLOT algorithm

" Data returned was of one type

The actual fields in the input file may be of the when porting to another system, the appropriate
following types: INTEGER, NATURAL, POS- system types will be mapped onto the local types us-
iTIVE, FLOAT, or LONG.FLOAT. However, ing Ada attributes such as SIZE, FIRST or LAST.
the values returned by the Portability will be increased because only one sec-
GETRECORD.FIELD procedure are always tion of code needs to be changed.
of the type LONG.FLOAT. Therefore, the sta- Our contractor tried to do this by providing a
tistical routines need not be concerned with the "system.spc" package of types for the project. It
data type of the input fields. define SHORTINTEGER and INTEGER. The IN-

* TEGER type was defined to be a 32 bit number
" Temporary file names could be formatted by because of their implementations. The size of an

I/O as desired INTEGER on our IBM 3084 is 64 bits wide. At first

When a statistical routine needs to create an this problem may seem minimal, however, consider
output file it requests a unique name from the the following scenario.
I/O package. The algorithm used to create this A routine keeps a count of some values. In
new file name may be changed at any time with- testing, all combinations of values which
out affecting the calling procedures. were forseen were used. After completing

" Allowed other functions to be written without the project the system runs for about 6

I/O months. At that time the software crashes

With I/O isolated in a separate package, the because of a numeric overflow.

statistical functions could be written very sim- What may have happened is that in testing the
ply. No messy file handling code was necessary size of the INTEGER may be 64 bits and the ac-
leaving the bulk of the code to just the actual tual system may be using a 32 bit INTEGER. Even
statistical algorithm, though the implementor may have assumed a 64 bit

INTEGER, it was not explicitly expressed and the
error eventually surfaced.

6 Problem not addressed For integer types it may be more appropriate
to create new types with names like: BYTE, IN-

* Actual file names could not be made transpar- TEGER-16, INTEGER-32, UNSIGNED_32, INTE-
ent GER.64, etc. In this way, someone porting the sys-

Even though file names could be created dy- tem will map these types onto the system implemen-
namically, file names embedded in the code tation types correctly. Therefore, if a type cannot be
would not be portable. The number of static correctly mapped, it will be known that other work
file names could be reduced, but if any exist will need to be done.
they will be inherently non-portable. We saw this type problem when porting the code

from the IBM 3084 to a Sun 3/60. The Sun 3/60 has
7 Numeric Quantities an INTEGER size of 32 bits. However, while coding

NEW.FILENAME, the function to create tempo-
rary file names, we actually used numbers that mayNumeric types are perhaps the most problematic of have exceeded a 32 bit quantity. This was not no-

all portability problems. Sizes and precision of nu- ticed until testing was done on the Sun. An over-

meric types differ tremendously across implementa- flow was detected in this routine which caused all

tions of all languages, including Ada. Ada provides others to fail since they all called this one. Since the

very nice facilities to extract limits and sizes from otracto id notdef a leNGthNTEoEe nd

numeric types. However, using an INTEGER type since portability was a factor, the handling of such

to define a variable may give you 32 bits of storage large numbers was done in two halves: the high-

on one system and 64 bits on another. The name order 4 digits and the low-order 4 digits. Any ma-

does not accurately describe the size of the storage. nipulation done on the entire number was done as a

Also, restricting yourself to a minimal common de- nulat nteed.

nominator, such as 16 bits, may be overly restrictive LONG luFLOAT instead.

and ot awayspossble.This solution works in all cases where the
and not always possible. LONG-FLOAT could handle these amounts (almost

It may be useful to define a set of abstract types all). However, this solution is a kludge. A long in-
in an Ada package for use in the system. This way, teger could have been defined to solve the problem.

However, we were not allowed to change the defini- David E. Johnson received the B.S degree in
tions. Luckily, though, we were able to catch this Computer Science from the University of Mississippi
problem at the initial testing stages. in 1988.

Floating point numbers are more complicated. He is a graduate student in Computer Science at
Knowing the size and range of the type is of min- the University of Mississippi with interests in oper-
imal use [2]. Base representation varies across sys- ating systems and languages.
tems and actual implementations. Precision may be
a better mapping quantity. Thus if you require 6 David E. Johnson
digits of accuracy, a type of FLOAT6 may be ap- Dept. of Computer and Information Science
propriate, or for 12 digits maybe FLOATI2. Thus 302 Weir Hall
when porting these are mapped appropriately. University, MS 38677

(601) 232-7396

8 Suggestions dave~cs.olemiss.edu

In conclusion, I make the following suggestions:

Do not focas or worry about I/0 until late in detailed
design. Work on the I/O package in isolation and let
the other teams simulate input as need until the I/0
package interface can be standardized. Also, do not
standardize the I/O interface until implementation
details can be tested.

Do not rely on file name formats. Inside the I/O
package, make sure that file name lengths (even file-
name, filetype) are defined as constants not hard-
coded. Also, different system use different separa-
tors. CMS uses spaces whereas UNIX uses a period.
This should also be a constant. A file name type
should be defined and exported for other users.

Do not rely on size of words or numeric types.
At the highest level have a small package of defined
types which are mapped onto the particular environ-
ment using attributes if possible.

References

[1] Olivier Lecarme, Mireille Pellissier Gart, and
Mitchell Gart. Software Portability with Micro-
computer Issues. McGraw-Hill, New York, New
York, 1989.

[2] Seth M. Lowrey. On the use of ada in mathemat-
ical applications. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Princi-
ples. ACM, 1991.

[3] John Nissen and Peter Wallis, editors. Porabil-
ity and style in Ada. The Ada Companion Series.
Cambridge University Press, Cambridge, 1984.

ADA SIMULATION PROGRAM OF A MULTI-PROCESSOR ENVIRONMENT

Steven K. Iwohara and Dar-Biau Liu

Department of Computer Science and Engineering
California State University, Long Beach

Long Beach, California 90840

Abstract
AMPSE's design is based on a modular

A simulation, implemented in the Ada building block approach to allow for
programming language, of a dynamic task- system modifications and enhancements
scheduling algorithm has been run on a VAX
8530 for the Advanced Multi-Purpose The AMPSE simulation consists of a set of
Support Environment's (AHPSE) distributed software models hosted on multiple
executive, this is a specially designed distributed pr,:essors which provides the
network, replicating memory rea-time simulation of the aircraft in an
developed to support real-time operational environment. The software
multiprocessor simulation applications, models must be executed at specified rates
In this environment, the computers may in order to provide a realistic
execute different processes at the same environment to the embedded computer
time, or communicate with each other via s:ftware. Each model contains algorithms
SMARTNet. The Ada language was chosen for a-d/or data required to simulate a
the simulation as it closely models the specific aircraft system or part of the
real world. Its multitasking features external environment such as the
-llow both synchronous and asynchronous aircraft's aerodynamics, avionics sensors,
_.erations, and Ada's reentrant features weapons systems and targets. These models
alow several tasks to execute identical are designed as separate software modul.e
sEquences of code concurrently. A family that can be plugged into the simulaticnr
f tasks was used to simulate the and easily moved among the simulation
computers, where each computer computers as requirements dictate.
asynchronously schedules and executes
locally arriving tasks. If the new task The AMPSE provides the capability for
cannot be guaranteed, synchronization/ multiple configurations ranging from a
communication with the other computers single LRU (Line Replaceable Units) with
takes place through rendezvous. Usina several models to a complete set of LRU's
Ada, and its concurrent features, allows with only the aerodynamics and external
the simulation program of a multi- environment models. Future enhancements
processor environment to be developed, would allow ECS models to be swapped with
debugged, and tested with minimal the aircraft's actual ECS or LRU executing
difficulty. their OFP's.

The AMPSE uses a RS-232 Data Switch,
Ethernet, and SMARTNet for network

Introduction communication within the system, see
Figure 1.

The Advanced Multi-Purpose Support .,.' ...
Environment (AMPSE) is a generic, modular,
and extendable system, designed to improve .
the overall supportability of weapon
system software by reducing the costs and
increasing the capability and flexibility i4-,,,,d I
of the real-time support environment. It - SMARTNet
provides a real-time simulation support
environment for testing and evaluation of
selected Embedded Computer System (ECS;
Dperational Flight Programs (OFPs). Th,
support environmnent communicates with the x''w
OFP's via a dedicated ECS interface
computer and a high speed real-time
simulation network called SMARTNet (Shared
Memory Architecture Real-Time Network).

The Data Switch provides manual operation Due to the fact that any computer on the

and direct terminal to computer connection network can have access to the data in
capabilities. Ethernet with DECNet shared memory computers can communicate by
protocol provides non-real time network reading or writing to this memory.
for file transfers between the various
simulation computers during the Research Obiectives
initialization and configuration modes.

The AMPSE operates in three modes: The current system executive (local
scheduler) is working in Fortran on the

1. Configuration: In this mode. the MicroVaxes connected to Ethernet and
operator will define the hardware/ SMARTNet. There is almost no task
software configuration of the scheduling mechanism in its distributed
simulation f executive. If there is one we can

consider it only as static, at most. The
2. Initialization: In this mode, the models assigned to the simulation

operator will run the diagnostic computers for execution were predetermined

routines, initialize the hardware, at system configuration, therefore the

and load/initialize the proper processing power of the computers are not
software. fully utilized. In report [1]. two

dynamic task scheduling algorithms for the
3. Execution: In this mode, the ANPSE were proposed.

operator will perform real-time
testing; interact directly with the These algorithms as attempt to fully

real-time simulation, monitor utilize the available processing power by
simulation data and execution, and dynamically balancing the load among the

control the simulation testing. computers. The first algorithm schedules
the software modules by using a simple

During the execution mode, each computer dynamic probabilistic algorithm. The
on the network executes the software second dynamic task scheduling algorithm
modules assigned at configuration/ is based on the availability of CPU
initialization. Each simulation computer resources.
has its own executive routines (local
scheduler) to schedule and execute the The simulation of the second algorithm
modules. The local scheduler will execute consists of 4 nodes connected in a slot-
the scheduled modules when an interrupt is ring configuration with SMARTNet. There
received, is a SMARTNet node and a local scheduler

in each processor. In addition, there is
Communication with other computers on the a global scheduler for the whole system.
network is performed via SMARTNet. The There is also a SMARTNet node in the
SMARTNet is a specially designed network, processor where the global scheduler
replicating shared memory, developed to resides.
support real-time multiprocessor
simulation applications. With SMARTNet, The local scheduler is activated upon the
each computer on the network has its own arrival of a new task or in response to
local copy of the shared memory. The the bidding which is initiated by the
shared memory is continuously updated over global scheduler. The local scheduler
a high speed slot ring network, see figure determines if a new task can be inserted
2. into the current System Task Table (each

. entry in the STT contains fields for
compuctercomputer- Computer-Id, Task-Arrival-Time, Latest-

Cor -,--J s, Start-Time, Deadline, and Computation-t_.... _ I0. .Time) such that all previous tasks in the
STT as well as the new task are guaranteed

com ,computer to execute. The latest start time is then
Commi?, S o1 computed and put into the corresponding

Shared Memory ArchiOtectr ** entry in STT.
Real Time Network

1. R) New tasks that cannot be guaranteed
fA t omoutr locally, or can only be accommodated at

comoew the expense of some previously guaranteed
task are rejected by the local scheduler
and are handed over to the global

- Conmn,., scheduler. The global scheduler then

. , , . - ,

takes the necessary actions to transfer References
the rejected tasks to any alternate
computer that may have the resources 1. Liu, D.B., "Dynamic Task Scheduling for

required to accept those tasks (using the the Ada Distributed System Evaluation
bidding schemes as developed by Stankovic, Testbed," Final Report USAF-UES Summer
J.A. Et al. [4.5.6.71). Faculty Research Program, August, 1989.

Results 2. Liu, D.B., "Simulation of Dynamic Task

Scheduling Algorithms for Ada Distributed

The simulation of the algorithms presented System Evaluation Testbed," Final Report
in [1] was performed using the Ada USAF-UES Summer Faculty Research Program,
programming language on a VAX 8530 under September, 1990.
VMS [21.

3. Laird, J.D., "Real-Time Issues in Ada,"

Ada was chosen in the development of the Proceedings of the 1985 AIAA/ACM/NASA/IEEE
simulation program primarily for its Computers in Aerospace V Conference, Long
built-in facilities. Concurrent processes Beach, CA, October 21-23, 1985.
and their mechanism to communicate/

synchronize can be constructed in the Ada 4. Ramamritham, K., and Stankovic, J.A.,
programming language by using its high- "Dynamic Task Scheduling in Hard Real-Time
level language constructs. Also, Ada's Systems," leee Software, Vol. 1, July,
run time system takes care of task 1984.
scheduling and inter-task communication
and synchronization. If the development 5. Sha, L., Lehoczy, J.P., and Rajkumar,
language such as C, Pascal, or Fortran is R., "Task Scheduling in Distributed Real-
used a multi-tasking executive must be Time Systems," IEEE, Proceedings,
written to handle the scheduling, Industrial Electronics Conference, 1987.
communication and synchronization between
tasks [31. 6. Stankovic, J.A.. and Ramamritham, K,

"The Spring Kernal: A New Paradigm for
A family of tasks was used to represent Real-Time Operating Systems," Sixth IEEE
parallel execution of the local Workshop on Real-Time Operating Systems
executives, represented by: and Software, SEI, Pittsburgh, PA, May,

1989.

local-executive : array(l..#nodes) of
local_..executive._task; 7. Stankovic, J.A., Ramamritham, K., and

Cheng, S., "Evaluation of a Bidding

This representation provides an easy way Algorithm for Hard Real-Time Distributed

to tune the algorithm to the actual Systems," IEEE Transactions on Computers,
hardware environment. Vol, C-34, No. 12, December, 1985.

In this simulation, it is shown that load
balancing in a distributed system can be
achieve by using a dynamic probabilistic
algorithm, based on one proposed by
Stankovic. This algorithm is easy to
implement in Ads programming language, and
is effective as the results of the
simulation show (2]. Simulation results
in an algorithm, showing that the average
response times tend to decrease as the
task interarrival time of the arriving
nonperiodic tasks increases in proportion

to their computational times. The
simulation results of the algorithm also
indicate that the CPU utilization is
balanced among the four simulation
computers, and that the system also
guarantees the majority of these tasks
with a shorter average response time tnan
expected.

Steven K. Iwohara is a Member of the
Technical Staff at Rockwell International,
Space Systems Division, Downey,
California. He received his B.S. in
Computer Science and Engineering from
California State University, Long Beach
and is currently pursuing a M.S. in
Computer Science and Engineering at
California State University, Long Beach.

Dar-Biau Liu is a Professor at California
State University, Long Beach where he has
been a faculty member since August 1986.
He teaches graduate and undergraduate
classes in Software Engineering,
Distributed Computer Systems, Computing
Theory and Programming Methods. His
research interest include Software
Reusability, Object-Oriented Design, and
Dynamic Task Scheduling in Distributed
Computer Systems. Before coming to
California State University, Long Beach he
was a faculty member at Old Dominion
University, Norfolk, Va. Previously, he
was a Staff Engineer at IBM Corp. and was
a project manager at ITT Corp. He
received a PH.D. in Applied Mathematics
and Computer Science at the University of
Wisconsin-Madison in 1972. Previously he
had received a M.A. in Mathematics from
Wayne State University, and a B.S. in
Mathematics from National Taiwan Normal
University. His current address is:
Department of Computer Science and
Engineering, California State University,
Long Beach, Ca 90840.

FRODO
Far-Range Orbiting Defence Outpost

Charles F. Rose, 1H

ABSTRACT must destroy. The enemy forces advance to attack the
Earth and the installation and FRODO must react to

This paper is concerned with the scheduling of affect their destruction. As a simulation, certain rules
resources in a simulated real-time system. It is govern the actions of the objects being simulated and
demonstrated with a program application: a simulated these rules will be detailed for completeness.
orbital defence installation, FRODO. This simulated
system is engaged in the rapid destruction of incoming FRODO itself is conceived of as an orbiting
enemy forces, and it needs to maximize its use of defence installation with a given number of weapons of
available resources to achieve its goal. Implemented two different types. This was implemented so as to
using Ada's support of tasking and inter-process make more complicated (and more realistic) the multi-
communications, FRODO demonstrates many of the process communication found in the system. One type of
issues which are associated with a multiprocessed weapon inflicts less damage but requires less down-time
application: the synchronization of events, the avoiding before it can be fired again and the other type inflicts a
of resource contention or inefficient use of resources, as greater amount of damage but takes longer to re-attain
well as the problem of program deadlock, readiness after firing. The amount of these weapons

available to the installation is arbitrary and is defined by
the program. Also, the logic of the system will handle
the different numbers of weapons and allocate them
accordingly. While FRODO is most logically an orbiting

WHAT IS FRODO? station, for purposes of this simulation, it can be thought
of as having a stationary position some distance from theFRODO (Far-Range Orbiting Defence Outpost) is Earh.

a simulated defence installation. The primary goal of the

simulated system is to defend the Earth against The enemy's forces travel towards the Earth from
hypothetical incoming enemy forces. To accomplish this some distant point and must bypass the protective shield
goal, the system must identify targets, decide which offered by the FRODO installation. Whenever possible,
targets should be destroyed first, decide how many they use their resources to attack FRODO and the Earth.
weapon resources should be allocated for a given target, These targets will become visible when they are within
and use the available weaponry to destroy these targets. some given range dependant upon what type of enemy

Programming applications such as FRODO, which ship they are. Like all other aspects of the simulation,
canbebrokenrdownming ptio suc andmstly de these ranges can be changed in order to alter the logic ofcan be broken down into discrete and mostly-independenit the program.

units and which are real-time in their scope need to be

developed in an environment which supports multitasking Enemy forces fall into a few categories and their
or parallel computing. Ada's comprehensive support of particular missions are defined by these categories.
multiprocessing and inter-process communication make it These types include cruisers, bombers, fighters, and
a logical choice as the language of development for this missiles. Cruisers are the strongest of these enemies,
type of application, being the least susceptible to damage from attack, having

the ability to withstand more damage, and having the
The simulation involves the reaction by the largest arsenals at their disposal. Bombers are weaker

FRODO system to the presence of enemy forces which it than cruisers and fighters are weaker still. The ships

follow different patterns of attack which are defined by
the category into which a given target falls. Fighters THE FRODO SYSTEM
always attack FRODO, bombers always attack the Earth, FRODO is divided into a number of discrete and
and cruisers attack either the Earth or FRODO. Two semi-independent concurrent tasks. Each of these
other types of te sim uat these rthe processes performs a portion of the actions required by
running of the simulation. These are Earth- and the system as a whole and a process will occasionally
FRODO-bound missiles and they are launched by the rendezvous with another to coordinate some event, i.e.
different enemy targets. Missile targets are never firing a weapon. These processes were implemented
present at the start of a given simulation. using Ada tasking and the rendezvous between the

processes were implemented using Ada's support for
inter-process communications under tasking.

Since this program is essentially a simulator, there FRODO has three unique and two non-unique
exists some logic dedicated to the resolution of things types of tasks which compromise its system. The unique
outside the scope of the actual application. This includes tasks are DECIDE, CONTROL, and SCAN. In addition
the logic to resolve attacks made by either side, as well there are a number of non-unique tasks in the system,
as the logic which decides if a win or loss has been one for each of the weapons. The number of weapon
achieved for a given scenario. This logic is defined as tasks corresponds to the number of weapons defined for
the game logic for the simulation. the system. An overview of these tasks is provided here

This game logic was designed to take a minimal and a more detailed study of their functionality follows.

amount of processing time and program space while DECIDE is the main task governing the actions of
maintaining as much realism as possible in the simulation the other tasks. It is the one which decides which targets
so as to accurately stimulate yet not interfere with the to attack and what types of weapons to dedicate to any
FRODO system. Wherever possible, the game logic was given attack. SCAN's functions include the tracking of
placed in the parts of the program as removed as possible targets and updating of target information. CONTROL
from the main tasks of the FRODO system, i.e. those keeps track of which weapons are currently available and
processes dedicated to deciding which targets to attack, handles requests for the use of those weapons. The
and those which control the weapon systems of the weapon tasks control the firing of a weapon as well as
system. the signalling of whether that weapon is ready or not.

Before a scenario is run using the FRODO These tasks have different levels of autonomy and
simulator, its data is generated and its parameters are set. are governed accordingly. Certain actions, i.e. firing a
The strengths of the enemy forces and the other weapon, require the synchronization of many tasks so as
parameters regarding their initial positions, velocity, and not to compromise the accuracy of system-wide
susceptibility to damage and detection are generated by information and so require a great deal of inter-process
the scenario generating routine or are defined in the communications to achieve this synchronization, while
game logic of the program and can be easily modified to others, such as tracking the targets, require little
affect the actual actions taken by the system at run-time. governance or inter-process communication.

There are definite criteria detailing whether the SYSTEM-WIDE INFORMATION:
FRODO simulation has been effective in completing its TARGET DATA AND STATUS FLAGS
task. It has been successful (resulting in a win) if all
enemy forces have been destroyed and no enemy attacks In order for FRODO to complete its tasks, it must
affected the Earth. If at least one enemy attack hit the maintain some information which is accessible to many
Earth, i.e. an Earth-bound missile was not destroyed parts of the system. This data includes the information
before reaching the planet, then the simulation has been on the targets currently being tracked and the various
unsuccessful and results in a loss. status flags which are maintained by some of the tasks.

For every target being tracked, certain
information must be kept. This includes its location,

speed, and what type of target it is (cruiser, bomber, acopt SCAN-DOWN; - SCAN ha confirmed its termiation

etc.). In addition to the scanned information stored with and DECIDE

the target, there is some derived information stored, such Once the process has been initialized (discussed in
as ETA and the priority of a target. This information is bringing up the system) and it has initialized and
periodically updated and accessed in order to make received confirmation of initialization from its dependant
decisions concerning which targets to are to be attacked. subprocesses (CONTROL, SCAN, and the weapons), it

will begin to repeatedly decide which enemies are to beThe status flags kept include which and how many attacked and what resources will be allocated for these

weapons are available for any given weapon type. This attackes un it sn rcted to s T g st
infrmaionis pdaed y te wapo an wepon attacks until it is instructed to stop. This signal must

control processes and is used by the decision process. come from an outside source (when the game logic
c opsais used bodecidehowmany he dson rcess. Ivte determines that the conditions for a win or loss have
is used to decide how many weapon resources to devote e mt)

to any given attack.

The firing of a weapon by FRODO involves the
THE DECIDE PROCESS rendezvous of the DECIDE and CONTROL processes

The DECIDE task is the coordinating task for the and the weapon processes in question through the

whole system. It must initialize and terminate all the CONTROL process. This is done in order to prevent the
whoe taskstem. in mitionto alicatin terinae we r the contentious use of resources and to maintain the integrityother tasks, in addition to allocating the weaponry for the oftesse-deioraonie.ow aywaps

speedy completion of the mission. DECIDE determines of the system-wide information, i.e. how many weapons

which targets are to be attacked first based on the current are available and which individual weapon systems are

bias of the system (Protect Earth, Protect Self, or ready to fire. The DECIDE process, upon requesting a
weapon to be fired signals CONTROL of this requestDestroy Enemies) and also decides if the bias of the and waits for confirmation from CONTROL that thesystem is to be changed, action has been accomplished. CONTROL allocates its

task type DECIDE is - define the entry points into the task resources and signals a request to those weapon
entry INITIALIZE: processes and waits for confirmation of the processing of
entr" FIRST-SCAN; that signal by those weapon processes. CONTROL then
entry CONTROL-READY: signals DECIDE of its completion, thus preventing
entry WEAPONSLAUNCHEDIweapon: in weapon type):
entry STOP-FUNCTION: unwanted concurrency during this critical section of the
entry SCAN-DOWN: logic. If this is not done, program deadlock may occur
entry CONTROL DOWN: when DECIDE signals CONTROL to use resources that

ande DECIDE; it does not currently possess but thinks it does.
task body DECIDE is

accept INITIALIZE; -- Don't do anything until initialized When DECIDE has received the instruction to
initialize the CONTROL and SCAN sub processes cease functionality, it will first bring down the SCAN
accept FIRST-SCAN; --SCAN has confirmed its initialization and CONTROL processes.
accept CONTROL-READY: -- CONTROL has initialized

- itself end its subproce sess THE CONTROL PROCESS
while not instructed to stop functioning loop

select Control is the process which handles requests for
accept STOP-FUNCTION: - Stop looping the allocation of weaponry for the attack of a target. In

orcalculate which of the available target, to attack addition, this process must initialize the weapon systems,
and allocate the necessary resources to do so with keep track of which and how many weapons of a given
a call to the CONTROL process. Make sure the proper type are currently available, and must gracefully
synchronization protocols have been followed to avoid tere crl y avaable, and mustrally
program deadlock or the compromise of the integrity of terminate all the weapon tasks which are controlled by
sVter,-wide status information the CONTROL process.

end select;
end loop; tak type CONTROL is -- define the entry points into the process

entry INITIALIZE:
terminate the CONTROL process entry FIREWEAPONIweapon: in weapon type;
terminate the SCAN process target ID: target ID type:
accept CONTROL-DOWN; - CONTROL has confirmed attackwith: in weeponomount type):

its termination entry WEAPONREADY(weapon: in weapon type:

wepon-o: in wepeniO.to); quickly process readiness signals from the weapons so as
et WEAPON DOWN(wsaon:in wponitypa; to maximize the amount of up-time for a given weapon.

weaponrl: in wespok.iOtype);
envy STOPFRING Once receiving the signal to stop firing, the

and CONTROL: CONTROL process must bring the weapon processes to
teok body CONTROL is a graceful halt.

accept INITIAUZE; - Don't do anything until Initialized
nitidslz. dl the weapone which CONTROL ,oantoa; THE SCAN PROCESS
accept confirmation of reading., from each of the iniTSalized

weapons

signal DECIDE of readiness: SCAN is the task which periodically updates the
target information of the system. It is the most

wle not inatructed top ng l oop independent of the tasks; only interacting with DECIDE
Welct

saept WEAPONREADYIweopon: in weapontype; to start and stop its processing of target data. It works
wspon_,D: in woponl0w:po) - with the target data set which is in then accessed by the

-a weapon has come on fine DECIDE process (and some game-logic routines).
update appropriate status information

of atask type SCAN is - define the entry points into the process
accept WEAPONDOWN(weapon: in weapoontype: entry INITIALIZE;

weapon.ID: in wsspon.Dtwl; entry STOPSCAN;

- a weapon has gone off line nd STAN N

update appropriate status infoma.ion

or tsk body SCAN is
accept FIREWEAPONlwopon: in weaponjypo; accept INITIALIZATION; - Don't do anything unt initialized

torgetID: targetDktype; complete an initial scan;

attack-with: in weasponimounttype); signal readiness to DECIDE;

allocate the appropriate weapons, instruct them to fire, while not instructed to stop scanning loop

an receive confirmation from those weapons that the select

requested action has been performed and then inform accept STOP SCAN; - stop looping at this point
DECIDE the action has been carried out; or

of delay for a specified amount of time and then update the

accept STOPFIRING; -ceae looping at this point target information.

end select; and select;

end loop; end loop;

signal DECIDE that SCAN is down:

terminate the weapon processes;
end SCANI

wait for confirmation of that termination;

signal DECIDE that termination is complete Once initialized, SCAN delays for a specified
end CONTROL;

amount of time and then updates the list of targets. It
Once control has been initialized, it initializes all continues to do so until instructed to stop scanning.

the weapon tasks dependant upon it and waits to receive
confirmation of their initialization. It then sets the Because of its location and independence in the

system-wide information to reflect the current state of system, SCAN proved to be one of those processing

readiness in the system. Then it signals DECIDE of its areas in which much of the game logic could be hidden.
readiness, after which CONTROL begins to perform its Along with updating the target data, the update target-list
main task, the coordination of resource (weapon) routine executes much of the game logic.

allocation. THE WEAPON TASKS

Upon receiving a call to fire a weapon of a given The weapon tasks control the actual firing of the
type, CONTROL has the task of deciding which weapon weapon onT re the acta fi ch ae
is to be fired. It signals the weapon system to fire, weaponry in FRODO. They are the only tasks which are
receives confirmation of this action, and then signals non-unique in the system and the weapon banks are
DECIDE of the completion of a fire procedure, after implemented as arrays of these tasks.
which CONTROL continues to process. task two WEAPON is

entry INITIALIZATION(weaponID: weaponID_tyPe);

In addition to firing a weapon, CONTROL must entry FIREltarget_lI: tsrgt_ID_type);

keep track of which weapons are currently available and entry CEASE-READINESS:
end WEAPON;

Terminating the system follows a similar pattern.
,cp Igd WEAPONW Processes accept signals instructing them to terminate

- Don't doytineunlinitialized and they signal any dependant processes to terminate

signa readiness to CONTROL; first, then accept confirmation of those terminations, then
wMe not instructed to cass .ins.s loop signal confirmation of their own terminations. As

.cet E(t..o:t.,pt_Ik_,p.); before, termination of FRODO is done by requesting
signaccpot..elar to CON0TRL: termination of the controlling task, DECIDE.

rsolve the attack;
delay whil the weapon has to wait; RESOURCE ALLOCATION. PRIORITY OF
signal readiness to CONTROL; TARGETS. AND BIAS OF THE SYSTEM

accept CEASE-READINESS; - stop looping at this pointan "O.,ct; Whenever the overhead of the system has been
an loo; processed (flag updates), FRODO attempts to attack

sinal CONTROL tht the weapon is down: enemy targets. Depending on the relative priority of the
end WEAPON; targets and the current bias of the system, as well as the

type or target being slated for attack, a different amount
After initialization of the individual weapon task, of resources will be allocated for that target.

the process accepts either a message to fire or cease
readiness. It processes requests to fire until told to stop The rules for determining which targets are to be
firing. During initialization, each weapon process is attacked and which resources are to be allocated are
given a weapon ID which it uses when it signals determined on type, bias, and closeness of a target.
CONTROL so that CONTROL will have the knowledge Cruisers, bombers, fighters, Earth- and FRODO-bound
of which particular weapon is making an entry. missiles are all given a relative weighting which is

modified by the bias of the system. These weightings
Once a signal to fire is received, the weapon first can be changed to adjust the actions that FRODO will

signals the fact that it is going off-line to CONTROL. It take in a given situation.
then fires and waits for the appropriate period of down-
time before signaling its readiness to CONTROL. The The closeness of a target is equal to its ETA and it
length of the down-time is defined by the program for a factors into the priority of a target each time it crosses
given weapon type. from one band of priority to another based on its ETA.

These bands can be defined at different locations to
STARTING AND STOPPING THE SYSTEM increase or decrease reliance on closeness of a target in

determining its priority in the attack queue. If a situationSince FRODO consists of many independently arises in which two targets hold equal priority, the

running tasks, they must be brought to full functionality closest one will be attacked first.

and terminated in a specific sequence to insure that no

unexpected results occur during processing. The system can be biased in its attack patterns

based on the current mission of the system. The
As DECIDE is the coordinating process for the missions that the system can be performing include:

whole system, it is DECIDE which is instructed to protecting the Earth, protecting the defence installation,
initialize the system as a whole. Once it has been and destroying the enemy forces. Various situations can
initialized, it brings up its dependant sub-processes, cause the mission to change. For example, if the Earth
CONTROL and SCAN, and waits for confirmation of is currently under attack from Earth-bound missiles, the
their initializations. mission will change from whatever value it currently

The dependant subprocesses CONTROL, SCAN, holds to be that of protecting the Earth. While the bias

and the weapon processes (dependant to CONTROL) are of the system can greatly influence the order in which

all brought up before DECIDE is permitted to enter its targets are slated for attack, it can at no time exclude a

main function loop, the continuous allocation of weapons target from being considered.

for the attack of enemy targets.

reported by the status-flags and the actual state
RESOURCE CONTENTION AND DEADLOC determined by the tasks of the system no longer coincide.

This can happen because of improper synchronization of
In a system of this type many situations use code during a critical section. The primary example of

potentially arise in which there will be contentious use this in the FRODO system is found in the procedure of
of resources or in which the processes will be in a state firing a weapon. If DECIDE makes a request to fire a
of dedlock, weapon without waiting for confirmation, there is no

One instance of deadlock can occur in a situation assurance that the appropriate status-flags will be set

in which the processing of any readiness signals is before DECIDE targets another enemy. At this point

relegated to a subordinate position in the CONTROL DECIDE will have fewer weapons than it thinks it

process. If one type of weapon readiness entry is given a possesses. This situation is avoided by the

lower priority than another readiness entry for a weapon synchronization of the DECIDE and CONTROL tasks

of another type, then a period of process lockout will (and the weapon process through CONTROL) during a

occur during times of frequent weapon firing. This weapon firing process.

causes weapon processes of one type to have to wait to
signal their readiness until all requests to fire are
completed, which makes these weapons virtually useless: FRODO (Far-Range Orbiting Defence Outpost) is

a simulated defence installation which is charged with the
Weapon A of type ao is fired defence of the Earth against the forces of a hypothetical

Weapon B of type a is fired enemy. It was developed using Ada's support of

Weapon B of type a goes off-line multiprocessing and inter-process communications with
Weapon A of type P is fired Ada tasking. The system is divided into a number of
Weapon A of type a issues a request to be brought separate processes working together to complete the

back on-line mission, each of which is represented by an Ada task.
Weapon A of type a is brought back on line Coordination of these processes is handled with great
Weapon B of type a issues a request to be brought care in order to maintain the integrity of system-wide
back on-line information, as well as to avoid program deadlock or

Weapon A of type a is fired inefficient use of resources. This is accomplished using
Weapon A of type a issues a request to be brought Ada's support of inter-process communications.

back on-line
Weapon B of type a is brought back on-line
Weapon A of type a issues a request to be brought

back on-line Charles F. Rose, III is an honors student attending
Weapon B of type a is fired Trenton State College in New Jersey as a computer
Weapon B of type a goes off-line science major. He is currently a junior and is planning
Weapon A of type a is brought back on line to pursue graduate study in the computing sciences. He

is a member of the programming team at the college in
Even though two weapon systems were ready to addition to being a member of Upsilon Pi Epsilon, the

be brought back on-line, only one was permitted to do so computer science honor fraternity. In addition, he is
and the weapon of type a was favored over the weapon involved in the design and development of technical
of type 0 even though the weapon of type 0 had issued its support programs for the Integrated Systems Division of
request prior to that of the weapon of type a. So a Computer Sciences Corporation in Moorestown, New
system in which a weapon of any type could be brought Jersey.
back on-line with a single type of entry is used. This
insures that no given class of weaponry is locked-out in Charles F. Rose, III
favor of another class. 809 Halliard Avenue

Beachwood NJ 08722
Another instance of deadlock can occur if the

timing of critical events is not handled with great care.
This can occur because of the contentious use of
resources arising if the current state of the system as

ADA, MODULARrTY AND INEGRATION

Kenneth L. Ivey

The University of Mississippi

ABSTRACT IBM provided the class with a wide range of
documents. Included in these documents were the *Ada-

his paper em in the features of Aia whiUch provide f Based Process Design Language (PDIJAda-2)", DOD-
m mity, upa ompilSD-2167,DOD-STD-2167A and complete specifications
and bodies of programs. Than. in light of the recant experiences in
writing a large statistical math package, it discusses the value of the about each of the statistical functions our package was to
various features of the language i enhancing the correctness and support. The actual design documents were to be created
comistency of the final project. Suggestions are made for ways of using IBM's PDL/Ada-2. The package that we were to
using the Imguage features at each of the software lifecycle stages to provide was part of a much larger system which we knew
anhance prognammer productivity and insure program correctns, nothing about. IBM provided us with a chart showing us

just how our part fit into the total project but at no time
were we aware of just how our package would be used.

Section 1: INTRODUCTION
Section 2: LIFECYCLE PHASES

The project which this paper describes involved an
agreement between a software engineering class at the Section 2.1: REQUIREMENTS REVIEW
University of Mississippi and IBM Federal Sector
Division. The agreement required us to write a Statistical The first official task of the class was a
Plot Package in Ada on an IBM 3084-QXC running requirements review held during one entire class period
VM/XA using CMS version 5.12. The specifications and continuing on for most of the afternoon. During this
were provided to the class by IBM FSD. They also meeting we were allowed to quiz two representatives from
provided and required their in-house programming IBM FSD about our understanding of the requirements
standards and DOD-STD-2167 and DOD-STD-2167A. and to clear up any ambiguities which we perceived at
The package was to include the following: that point. We had no formal document to present to

1. A Correlation Function IBM at this stage. We only had to be sure that we knew
2. Three Curve Fit Functions (Curve Fit, just what they wanted. After the Requirements Review

Time, Step) we began in earnest to develop our preliminary design.
3. A Histogram Function
4. A Plot Function Section 2.2: PRELIMINARY DESIGN PHASE
5. A Statistical Sampling Function
6. A Set of functions to provide statistical At this stage of the Software Engineering

summaries Lifecycle, our design document was completely written in
7. A Sort Function IBM's PDL/Ada-2 which resulted in fully compilable and
8. A Tabular Function. commented code.

- provide a satitical mammary usin die data supplied byThe class was divided into five groups, four of - dw operator
which would write code and one group which would be in ->
charge of the integration of the separate pieces written by proeur IrA CAL SUMMARY

each of the different groups. Each group was given an (FIMNAME : in FILNAMETYPE;
FIELD in FIELD NAME TYPE;account on the IBM 3084 where all development was to FIELNAME : in El._IDTYPE;

be done. Class meetings were held twice a week for one TrrLE : in oGAPILLE..Tree;
hour and fifteen minutes. The class meetings consisted of OUTVDEVICE : i ourTMDEV1CETre)
lectures on the Ada language itself in the beginning. _<
Later lectures were on the Software Engineering - usie data supplied in FELENAME. crea a- ,A-tiedeal mumnary of t Met in MILD end esod to
Lifecycle. Finally discussions shifted to reviews of the - otn' inyE' ofcE.
requirement documents provided to the class by IBM and ->

then to the design issues themselves.

(It should be mentioned here that there were supporting code. The framework of the project became easier to see
documts which were not written in Ada but they served when you always built on previous design documents
as documentation only) The design document primarily when creating the next document in the lifecycle process.
consisted of heavily commented Ada specifications. The
specification is the part of the program unit that stipulates Section 2.4: CODING PHASE
the interfaces with other program units. It defines the
external characteristics of that particular unit. Only calls Next came the coding phase. This was one of the
to procedures listed in the Specifications are allowed. No simplest stages, because of the development lifecycle that
access is allowed to anything not specifically mentioned we had been using. All of the control statements were
in the formal program unit Specification. The body is the already in place at this point in the form of stubs and had
second part of a program unit. The body provides for the been successfully compiled at each of the previous stages.
implementation of the series of operations that the unit All we had to do was take this Detailed Design
performs. The separation of the Specification from the Document, which now consisted of Ada Specifications and
Body in a programming unit enforces programmer Ada Bodies, where the Body was as described earlier, and
abstractions and ensures information hiding. convert all the comments into actual Ada code.

I remind you that the actual coding at each stage
Section 2.3: DETAILED DESIGN PHASE was done on four different accounts. The individual

groups were responsible, at each stage, for providing the
Let us return to the project. After a formal review by integrating group with thL, appropriate design document

IBM and their acceptance of the Preliminary Design pieces for the area of the project for which they were
Document, we then progressed into the Detailed Design responsible, e.g. one group was responsible for all of the
phase. This involved adding Ada specifications of the plot, histogram, and sampling procedures. At no time
bodies for each specification declared in the Preliminary during the coding process was the entire code for the
Design Document and adding, in place of project located on a single user's account. It became the
sequence of statements, actual stubbed out loops and task of the integrating group to develop tools and
logic structures in the form of comments in each body. procedures, on the project's primary account, to allow for
This process followed the standards dictated in DOD- a rapid and smooth integration of the complete Statistical

STD-2167A. Plot Package.

Section 3: INTEGRATION
- usaq dh data maplied w FILENAME, cmte a
- Ijafal u, my of l- da.n FMD, A W,t Section 3.1: PRELIMNARY DESIGN PHASE

This first attempt at integrating all the pieces of
MUc,,:in TATS iFCAL SUiO: dA this project came at the end of the Preliminary Design
(FMLE -in FMLNAME TYE. Phase. Each of the four different groups had prepared

Fr .D_ uA An FMW DD -_TMIE Preliminary Design Documents for each of the functions
T :LE in GRAPHLABELTYPE;
orU -DEVIcE : im OUWTXDEViCkrY,, which had been assigned to them. Because of time

constraints, the integration team only had enough time to

- (rE, pamomamor dm -> RaISE run the code through the parser. This eliminated all the
ExeptimT111), syntax errors, but several other errors still existed. The

- (NCTENDOFJu.LE(FLENA E) .> design was sent on schedule to IBM where they compiled
- io T1 RAtYREC0: Rood in (FAU.N E)) it on their Rational System, but to our horror, when the

- CALCULATMNS CTEMPR AR ORDM FLM) report of the errors returned from IBM, there were a total

-IRUE -> of twenty-nine. Most of the errors had to do with our not
- CLOSE(FMNAME). adhering to their design specification package called
- o TMrPU(TLE. FIML NAME. MULTS (CALCULATONS)) "SYSTEM" which contained all the type definitions
- to OWYPItrDEVICE required for the project e.g. instead of INTEGER we

were to use INTEGER-TYPE which was a bounded range
of integers dictated by IBM FSD.

Although the DOD-STD-2167A format could be

used with most any methodology, it directly maps onto Section 3.2: DETAILED DESIGN PHASE
Ada. But even at this level we used our Preliminary
design document to create this new (required) Detailed When the time came for the integration of Phase
Design Document. This building process would continue two, the Detailed Design Document, a more solid,
throughout the entire project. This is an important issue stepwise plan had been developed. The integration team
because each phase is just a continuation of the previous first put all the specifications together and successfully
one. At no point did we have to take some chart (i.e. compiled them. This integration step had to be repeated
HIPO, Data-Flow Diagrams) and convert it into Ada at this phase because changes had been made to the

interfaces after the review of the Preliminary Design. procedures were in small files. This localized any errors
This was not a problem this time, because each group had encountered. The size of the files made a big difference
taken more time to make sure their specifications were since the final product was about seven thousand lines of
correct. Next the Bodies were added. This was a fairly actual code, not including comments and headers.
stmraightforward process. Only one body would be added Compiling or searching a few hundred lines of code is
and then immediately compiled and tested. Once it was much easier and much quicker than seven thousand. Only
working, another body would be added and so on. One when a body had been successfully compiled was another
problem we ran into at this stage was maing sure the body stubbed out. Finally after all the procedure bodies
types between the interfaces were consistent, i.e. had been successfully compiled the "IS SEPARATE" 's
INTEGER instead of INTEGER TYPE. The other were removed and the actual code put inline. This final
problem at this point was making sure the specification of step caused no problems because when the "IS
the body conformed to the specification of the declaration. SEPARATE" form is used, it is as though the actual code
It should be pointed out here again, that as we were is physically in line.
progressing through this lifecycle, we were getting closer
and closer to the final code. Using PDL/ADA-2 did not Section 4: PROBLEMS IN FINAL INTEGRATION
involve any charts or diagrams that had to be converted.
Both DOD-STD-2167 and DOD-STD-2167A did require One of the first problems we encountered
matrices and charts, but these were done as supporting integrating this final phase was in interface consistency.
documents to the actual design and not as actual design This mainly involved calls to procedures in our I/0
documents. All of the actual design documents were Package that were changed at the last minute and the
compiled and commented Ada code. communication of these changes was sometimes not

received by all groups.
Section 3.3: CODING PHASE Another set of problems developed involving the

propagation of user-defined errors. Any user-defined
The final phase of integration came when all the error defined in the I/O package that needed to be

coding had been completed. This was the most difficult propagated up so it could be trapped by any program
and time-consuming phase so far. Again here a plan had "WITHing" our package would first have to be renamed
been devised to be used during this integration period, in our specification using Ada's "RENAMES" form.
As in phase two, we first integrated all of the
specifications into one physical file and continued to work NAME ERROR : exception renames
with them until they successfully compiled. Then the STATPLOT IO.NAMEERROR;
bodies of the procedures were stubbed out one at a time
using Ada's "IS SEPARATE" form. Section 5: TESTING
This would be in the PACKAGE BODY:

The final step for the integration team was to testPW e&W TAT,.'r A RY seach function. Each group was responsible for testing its
(rAW : n 4--AM(k TYPE; Procedures for correctness and accuracy. The testing byFIELD : in F ,ELkNAME TYPE; the integration team was just a check to make sure each
FIELDNAME : in F1ELDDTYPTI:E m GR.fI _L.YLTPE; procedure still worked in its new environment. A test
OtUTP UDEVICE : in o0nrPr-DEV CETYM program was written by the integration team to serve asi SEPARATE a demonstration to IBM representatives at the deliveryThis would be in a PHYSICALLY SEPARATE file: meeting. The test program simply made calls to all of

,a-,,PACKAGOMe our functions in the Statistical Plot Package to
F-,,, STATIWAfs SUAAsy demonstrate the usage and to show sample output, i.e.FILENAME : FI- NAME TYPLE; screen, files, and printouts.

FIELD : a FIDNAMELTYPE;

TITE : in O. LAB .WEL TYpE; Section 6: CONCLUSIONSbo% OULff DEVE in OLr DEVICE.TPi. There are some features of Ada that help to insure
-.dmodularity and enhance the correctness and consistency of

-4 -A m'L-S UStMAR the final project. Because Ada provides, in the use of aspecification and Body in the structure of each of its

This allowed the executable code of the procedures to be programming units, a means of separating the user
in a physically separate file. The referencing environment interface from the implementation details, it was a totally
for that code remained in the primary body as though the straightforward procedure to use only Ada specifications
actual code was inline in that body. One of the biggest to describe the overall project at the Preliminary Design
advantages in doing this was, that though the size of the stage. We knew at this time what the interfaces to ourBody was substantial it never, during integration, got functions would be so it would be a simple process toexceB y large, this made edits during the integration create the specifications. We knew at Preliminary Design

phase much easier. Also the actual code for the that each of the functions would need to call some

procedures to deal with 110. We could implement this as
cafs to *My"tca 10' and lave it at that, compilin the
specification of 'Mystical V/0 without any infonnation1
aout bow the 1/0 would finally be implemented. The
entire project could then be checked for consitency at
each level us only Ada Tools.

A Package in Ada surves as an abstraction
mechanism and allows the programmer to fiy capture all
of the pregram Units and type specifications required to
implement a particular programming abstraction. For
instance, one might have a package Called "STACK'
which contained all of the functions and procedures
required to implement a stack. This Ada feature allowed
us to use a package called "SYSTEM DESIGN* provided
by IBM to do all data definitionis. That way all sub-
contractors on the project, not just us, could use the sme
data descuiptors and avoid any type conflicts. We simply
imported the package 'SYSTEM DESIGN' at every stage
of the design using an Ada *WITH* statement.

Mr. eneh L. h~ey is cmudity so iadrrde stut st the
University of Mississippi. He will Vmut in May with a DvAhlor
Of Ais anCooyste Science. A unior from Jacksoo, Miss., he is
presidet Of 11he StUdnt Chsar of she ACM. For the project
seporW ed i fate pape be served as the director of the intgratnS
group. He plans on beginnin his graduate work iw Computr
Scim in May. He my be reached at: The Depaiment of
C4MPUte end Infornation Scienc, 302 warf Hall, Universty, MS
33677. ken~cs.OLEMl55.edu

Paper No.

PAPER TITLE On the Use of Ada in Mathematical Applications

AUTHOR(S) Seth M. Lowrey

COMPANY The University ofississippi

I have agreed to appear at the Ninth Annual National Conference on Ada Technology
(ANCOAT) which is sponsored by the Annual National Conference on Software
Technology, Inc. (ANCOST). I recognize that any paper or written document that I may
submit in conjunction with my appearance at the Conference may be bound into the
written Proceedings for the Conference. Therefore, the paper(s) is approved for public
release and sale. Its distribution is unlimited. I agree that ANCOAT has no responsibility
for the content of any paper I may submit, or for the content of my oral statement made
at the Conference. I agree to release ANCOAT from any responsibility arising from the
content of any such paper or speech. I further recognize that ANCOAT has no
responsibility for the content of any other paper or speech submitted or made by any
third party, unless ANCOAT specifically endorses such content, and I accordingly release
ANCOAT from any responsibility arising from such papers or speeches.

SIGNATURE: " i- A\
Seth M4. Lowrey

On the Use of Ada In Mathematical Applications

Seth M. Lowrey

The University of Mississippi

numbers,* "model numbers,' and "model intervals.' The
Abstract definition of the language states plainly that, "in the

gepneral case, division does not yield model numbers and
In many applicatiomsthe programuing language Ada in consequence one cannot assume that (I.O/X)*X =isue operform ,-athunatical and sttistical akulatioas.

iseeoer mthetma n ofticalandestatisticalncaltion. 1.0.' (Ada L.R.M., 4-21) In fact, Ada provides nothing

aot aware of the irregular problems which are from that causes its mathematical functions to be anymore
t orting betwe unlike machines those programs that wme accurate than those of other programming languages. Ada
floating point numbers and variables. Due to the rigorous overall only promises (fairly) strict portability of its inaccuracies.
specifcations of validated Ada inplementations, this problem This is odd, since Ada was designed as "a language with
appears to be a minor one since corrections can be made that are considerable expressive power covering a wide
portable among all implementations; yet the chief danger is in
the unawareess of the programmer that there ae limits to application domain. It appears that mathematical

precision floating point manipulation in Ada implementatiom on application were left out of this domain, and because of
all machines. These limits will be addressed as the method of this now some programs for sensitive mathematical
encoding floating point numbers by validated Ada applications may be programmed without concern for
impliemtation and type conversions to and frot floating point errors propagated through use of Ada's basic arithmetical
types are observed. Soe general functions and their handling functions.
of floating point types will be examined through the use of a
contrived pmple, demoTrtrating ae pdtfales of precision
programming in Ada ising floating point types and the dangers There is a definite problem here that we can
of ignoraM reliance on Ada's prededared floating point types. hope Ada programmers are conscious of, but efforts must
It will be shown that, with proper precautions and specific be increased to make sure of this. First we must have
portable error teting methods, floating point aritinetic may be some knowledge of what makes Ada's floating point
effectively employed with greater regularity. types portable. In Ada precision may be declared by the

programmer to a certain number of decimal places if
desired, or standard floating point types may be used for
easier expression of operations. Numbers represented by

It is common knowledge among most either type method are internally represented according to
programmers that floating point programming in most a few basic axioms dealing with model intervals. For
languages is unreliable and inaccurate to a certain degree. any real type definition a set of model numbers is defined
The fact that some numbers representable in some which contains numbers which are completely
numeric systems are impossible to represent in others has representable on the machine for the current Ada
haunted mathematicians as well as high-level language implementation. The model numbers do not necessarily
programmers. As a simple example, the value of one- include all numbers representable on the machine, but
third is still impossible to represent accurately in all but they guarantee an accuracy on the specific type definition
fractional number systems. A decimal representation can within bounds called model intervals. A model interval
only show the repeated fractional part, "0.3333333... is any interval bounded by two model numbers. In an

' Of late there has been progress in the standardization operation which results in a real subtype, the following
of floating point representations and a strong effort to statement insures accuracy to the specified degree no
create a sense of awareness about the traps of using matter what platform is used:
language-specific facilities for floating point arithmetic. T resing model interval is the smallest

model interval (of the result subtype) that

There has been much recent progress in the includes the minimum and the maximum of
development of floating point accuracy in the language all the values obtained by applying the
Ada. Its emphasis on portability provides a solid platform (exact) mathematical operation, when each
on which to build accurate arithmetical functions which operand is given any value of the model
may be reused to maximum potential. Unfortunately interval (of the operand subtype) defined for
many programmers depend blindly on the built-in floating the operand. (Ada L.R.M., 4-20)

point operations in Ada without recognizing its hidden
inaccuracies because of Ada's specifications of "safe

Thus the model interval of the final result will .. and 0.67 are not. In Ada implementations floatinjbe related to the exact mathematical result in that the point representations of integer numbers are sometimes ofbounds of the model interval will also be bounds of the the first type (5 - 4.999999...) and are sometimesresult. This is a strong statement for portability since more precise in lay terms (5 - 5.0000). In the firstspecified precision in one Ada implementation will instance an algorithm will fail if it relies on a comparisoncorrespond in general to the same specified precision in such as 'if (5.000 - float(5))' since the second term isother Ada implementations. This also demonstrates that seen as 4.999999 In actuality, the definition ofarithmetical eor for floating point operations will not Ada explicitly provides that the values 5.0, 3.0, and 15.0exceed certain bounds, but it does not give the will always be model numbers, so using the example ofProgrammer a facility by which he may determine a more 5.0 will function properly. It is all values other than
precise final result when intermediate results have these three that should cause concern foz the

dig due to errors such as machine rounding errors. programmer.

The programmer of Ada programs obviously Ada provides a solution for these problems inmust be made aware that all floating point precision its strong emphasis on packages, procedures, andproblems have not been rectified because of the overloading. Effort has gone into developing portable,portability of the Ada language. Other errors which arise generic routines for accurate floating point arithmetic,in simple use of floating point numbers are comparison and although it is almost impossible to correct all floatingerors and type conversion errors which may have drastic point deficiencies, there are packages of floating pointeffects, especially in statistical applications. For operations available which may be used to correct all theexample, in a recently completed statistical software problems mentioned above. One such package, theproject, the Median and Upper and Lower Quartiles of a GENERIC SCIENTIFIC COMPUTATION packagelist of numeric values were required. In determining the developed by the DIAMOND Esprit project in EuropeLower Quartile for N numericvalues, if N/4 has no described in (Wallis). In this package are comprehensivefractional part, i.e., it is an integer, then the lower floating point facilities, including ROUND DOWN,quartile is equal to (VALUE[N/4] + VALUE[(N/4) + 1J ROUND, and ROUND UP, which the programmer may)/ 2, i.e., the mean of the number in the list at positions use to specify the type of rounding to be done during aN/4 and (N/4) + I. If N/4 is not an integer, then the type conversion; also included are DIVIDE, which maylower quartile value is VALUE(max(N/4)], i.e., the be used for precise division of floating point numbers,number in the list at the position (smallest integer greater and EQUAL, which may be used to test precisely thethan N/4). Although these formulas seem harmlessly equality of floating point values (See Wallis, pp. 99-120simple, the comparisons for integer values were quite for a thorough description of this package). This packageextensive in the final code because the following code did can be instantiated for any desired precision and claimsNOT work: to give precise results within the specified precision, thus
LOWWmn.EG : la; L POPsmoN: foat; supplementing Ada's power to give a wider domain inLW~aItIMoN:. N/4.0; mathematical, statistical, and scientific applications.
LOWE EOER - imapr(LOWkI Posrr)ON);... In spite of the availability of packages such as

this one, many Ada programmers may not have access to
precise floating point operations. This is a dangerous

An obvious failure point is the type conversion situation, especially in the case ofreal-time programmingin the second executed line. The programmer is which requires continual precision in calculations. Thepromised *The conversion of a real value to an integer Ada community must be aware of the pitfalls in floatingtype rounds to the nearest integer;" but "if the operand is point programming and the solutions available. Ifhalf-way between 2 integers, rounding may be up or accurate standard floating point packages are not provideddown.' (Ada L.R.M., 4-22) Even a simple fix by to developers and programmers, they may be forced toinserting 'integer (LOWERINTEGER + 0.5)' in the rely on 'home-made' mathematical functions whichsecond line will not work necessarily on all Ada reduce security and reliability, or worse to rely on Ada'simplementations because the fix depends on rounding built-in facilities.
down if the number is half-way between the two integers.

After much programming to achieve a tested,
portable algorithm to find the "smallest integer greater
than N/4,0 another pitfall can be seen in the comparison
(LOWERPOSITION a ' Equality in real

numbers is subjective and must by necessity be analyzed
with someintelligence. The values 4.9999999... and
S.0 are equal mathematically, but the values 0.666666.

REFERENCES

Reference Manual for the Ada mmina Lanmmae.
ANSI/MIL-STD-1 R1SA-1983, United States Dqm t
of Defense (1983).

Wallis, Peter J. L. ImnRmvinjg Floating-noint
Emgaming. Chichester: John Wiley and
Sons (1990).

Mr. Seth M. Lawrsy is - undergndu in Compuer Science at the
Univeruty of Misssippi. He will padumae in May with higheat
honors. He will bein work with a firm in Dallas as soon a he
praduates. He can be reached at the University of Mississippi,
Department of Computer and Information Science, Weir Hall Rm.
302, University, MS 33677
sshcs.OLEMlSS.edu

AN ARCHITECTURE FOR AUTOMATIC COBOL-TO-ADA TRANSLATION

Ronald B. Finkbine

Computer Science Department, New Mexico Tech
Socorro, NM 87801, (505) 835-5126

e-mail: finkbine0minos.nmt.edu

The intent of the DoD in developing ADA was for all new software
ABSTRACT systems to be completed in, and maintenance programming requir-

ing substantial changes be converted to ADA unless adequate justi-

Automatic conversion of various dialects of the COBOL language to fication is provided. Despite this requirement, few projects are be-
ADA will allow the COBOL user community to increase usage of ADA ing implemented in ADA, producing few experienced ADA program-
and decrease dependence upon COBOL. The use of automatic conver- mers and incurring ever higher costs in software system maintenance
sion tools is the only economical method to convert applications with- (high COBOL-induced costs due to the nature of the language and
out expensive redesign and/or reprogramming. Conversion will allow high ADA-induced costs due to few available programmers). Currently.
these systems to take advantage of advances in computer technology experienced ADA programmers are more expensive than experienced
and reduce the long term costs of maintaining and enhancing COBOL COBOL programmers and will remain so until increased demand for
software systems. This paper will discuss COBOL-to-ADA translation ADA programmers force an increased supply and corresponding costs
in terms of; translation as a method of cost-effective development of the drop.
ADA userbase, cost benefits of automatic translation, functional trans-
lation methodologies, automatic translation methodologies, concluding Maintenance costs of existing systems will continue to escalate as cur-
with a recommended architecture for COBOL-to-ADA translation. rent COBOL programmers age and retire, fewer experienced COBOL

programmers are being produced by industry and academia, the total
number of programmers being produced by academia is falling, and
recent graduates are less apt to desire to program in COBOL when
jobs using other languages are available. In addition to increasing
maintenance costs, the amount of program maintenance for COBOL
applications will dramatically increase this decade due to the nature of
COBOL itself.

Ot January 1, 2000, approximately 75 (7f of all COBOL programs are
INTRODUCTIOQN going to produce incorrect results due to COBOL compilers returningthe current date in YNMMDD format. The severity of this problem

Today's increasing reliance on computer systems for information han- has not reached system users. If the majority of programs in a software

dling has many organizations facing the dilemma of how to modernize system need to be edited for inventory expiration or interest compu-

antiquated data processing systems. This paper discusses the advan- tations, and management has indicated interest in converting to ADA.

tages of conversion of existing systems, the porting of existing function- why not just convert tie system?

ality. as an alternative to the development of new systems. Due to the
large amount of COBOL code that exists in government and industry Tite time to concentrate on COBOL-to-ADA transition is it the decade
computing environments, this paper concentrates on COBOL-to-ADA of the 1990's. This is an unprecedented opportunity for expatsion of
conversion. It is not the intent of this paper to recommend replacement the ADA userbase. With increasing costs of maintenance, growing

of COBOL entirely, but to investigate the issue of, cost effectively and programmer dissatisfaction with COBOL. and the coming date forced

automatically, converting existing COBOL applications to ADA with edits, the pressure to migrate implementation languages will increase.

minimal programmer intervention. As the difficulty of maintaining old
software systems rises and the cost of writing a new line of code passes
$200 1, automated system conversion is becoming an attractive option COST BENEFITS
for system migration. When viewing methods of porting system functionality, cost is usually

the deciding factor. However, cost estimates for software development
DEVELOP ADA U.SERBASE are generally a risky endeavor and include a large margin of error.

dependent upon the size of the project and tle maturity of the tech-

Government officials responsible for ADA usage are attempting to in- nology utilized. System conversion is a relatively undeveloped field of

crease the number of projects and people using ADA for all forms of computer science, and few studies, text. or published papers are avail-

programming; MIS, real time, and scientific applications. This section able for research. However. one series of studies performed in tle late

will discuss the various opportunities becoming available to increase 1970's were referenced in this paper. Various authors have developed
the use of ADA. including programmer distribution and the increasing equations that approximate the number of effort (in man-months) re-
cost of COBOL. quired for the average software development project.

redesign and reprogram E = 5.2 * (L^0.91) (10s ever, other languages such as PASCAL and ADA are very rigid in their
(2)4 type checking and data type conversion involves a number of function

reprogram E = 2.6 * (L^0.91) calls (special functions made available within the language). This type
conversion E = 7.14 * (L^0.47) (3)5 of interpretation is not straight forward and dependent upon the hidden

features of the implementation and target languages.

where L is the number of lines of code in thousands. It is apparent that code translation would require a small amount of
user time (a small amount of final testing would be necessary), but

The equations for redesign and reprogramming were developed over the effective use of programmer time is essential also. To better uti-
a sample of 60 completed projects and the conversion equation was lize programmer time and maintain consistency of translation across a
developed over a sample of 31 projects6 . The conversion equation was software system using many programmers, automated tools should be
developed by observing manual conversion projects, no automated con- used.
version was attempted. The equations illustrate the savings in overall
system cost possible when utilizing system conversion rather than sys-
tem development. AUTOMATIC TRANSLATION METHODOLOGIES

The analysis of data from converted, reprogrammed, and redesigned In developing a software translation system, three system architectures
systems demonstrates the costs that can be saved by reuse of specifi- will be considered; one translator for each COBOL dialect and im-
cations and/or source code. For example, consider a system of 100,000 plementa~ion machine, a translator-generator, and an expert-sivstem-
lines of code (L = 100). The expected effort (in man-months) for re- based translator for all COBOL dialects.
design and reprogramming would be 343.6. for reprogramming from
post specifications would be 171.88, and for conversion from existing The approach of one translator for each dialect and implementation
software programs would be 62.2. This estimate is for manual software machine clearly would be difficult to control and maintain due to the
conversion, so automated conversion should offer even more savings, large number of implementation machines and COBOL dialects. How-
In general, the fastest, safest, and least expensive method of porting ever, building translators for certain well chosen dialects and machines
systems is conversion, especially if the conversion includes the use of is possible. For example, translators could be build for the standard
automated tools. COBOL implementations on popular systems; IBM mainframes, DEC

and HP minicomputers, and CDC mainframes. This small set of set
of translators would allow migration patits for a large portion of the

FUNCTIONAL TRANSLATION M |ETHODOLOGIES existing COBOL code. This would not allow for migration of other ma-

There are three methods for porting system functionality; redesign and chines (PRIME, IBM PC's, etc.) or for nonpopular COBOL %endors

reprogramming, reprogramming from existing system specifications, on popular systems.

and software conversion. The translator-generator would be similar to compiler-generators in
The redesign of an existing system is equivalent to discarding the entire use today. It would accept an input file of tokens and production rules.
Tereesgoexisting system anddeveloping stm aia n. oicluding fhntil and using the rules, translate the source language tokens into targetexisting system and developing the system again, including functional laggetkn.Teietofstargnrtrsstosmlfth
description (what the user expects), 'system description (design of the language tokens. The intent of software generators is to simplify tile
destincudiong wh rat auser expts), sste n descriptio gn of coding process, however, with the many options available on COBOl.
ystem including program e program function, and description of executable statements, the coding of the production rules would be

all files used), program description (detailed description of each pro- very complicated since the programmer would have to code productiongram and file), and actual programming (target language code). This rules for the source language. the target language. and the niapping

is very expensive in terms of programming time and user time if the from source to target.

users need to be interviewed and all information processes reviewed to

determine requirements. The expert-system-based translator would be a complex software s%-

The reprogrammingof existingsystems involves writing new target)an- tem and under constant revision since new versions of COBOL continuie
The sure o derom a existing fntemsinolesritin oew targetan- to be released by vendors. This system would process entire COBOLgage source code from an existing functional description or specifics- software systems, analyzing a set of programs as a group, not individu-
tion determined from previous user interviews and information process ally. This would allow the conversion system to do a number of specific
reviews. The cost for this type of activity is considerably less than a system-wide functions: enforce variable name consistency. determine
complete redesign and reprogramming since the functional description data file usage, and define database schemas

is reused.

This system would need to be interactive with the programmer. but
The conversion of existing code is, simply, the altering of language record previous decisions to maintain consistency of translation. De-
statements from the source language to the target language. For ex- cisions would need to be made by the system, especially when dif-
ample. most languages have statements for printing data for the user fering dialects of COBOL react completely differently when presented
Some languages use the word "PRINT" to signify an output statement, with the same program (i.e the sort order problem between EBCDIC
but words such as "WRITE- and "OUTPUT" serve the same purpose and ASCII machines). An additional problem is vendor applications
in other languages. Substituting words of similar statements among that use preprocessors to implement their systems. For example. CIC(S
different languages is the easy part of system conversion. More difli- and various relational databases have embedded commands in COBOl.
cult is determining the intent of the original programmer when that source files that are translated into pure COBOL by their preprocessors.
one statement was written. Some mechanism would be needed to pass through these commands and

hope the vendor has an ADA preprocessor.
A program is more than a list of statements, one can translate every

statement in a program and still not fully translate the total function- Tbe best type of architecture for an expert-system-based translator
ality of the program. Some languages have features in support of a might be a blackboard architecture with knowledge sources for each
statement that cannot be translated in only one statement. For exam- statement (MOVE, ADD. etc.). Compiler technology would be in-
pie. COBOL data-type conversion (from alphabetic letters to compu- cluded, but this type of system is too large and complex for exten-
tational numbers, or vice versa) is automatic, the programmer simply sive use of current compiler-generators. The translation system would
moves the data between variables and the conversion is complete. How-

translate individual COBOL programs, as well as implement system-
wide functions. Records should be kept of all decisions by programmers
using the system, notifying users when inconsistencies in translation are
introduced.

FUTURE DIRECTIONS

A computer scientist should view algorithms and functions as constant
and their language expression as transitory. For example, the factorial
function (algorithm) is constant, but its language expression is variable.
The FORTRAN, PASCAL, and COBOL code that calculates a factorial
is not word for word equivalent, though each implementation might
produce correct and equivalent results. The user does not care in what
language a program is written, just in the results.

ADA has been developed for, and by, the DoD and, for the foreseeable
future, will remain the DoD standard. But what of the future? Will
Visual ADA be developed? Relational ADA? What language migration
will be taking place 20 years from now and how will it be performed?

In the future, as the pressure to convert to modern languages increases,
the migration among languages will increase, spurring development of
automated tools for translation and data-conversion. "smart" editors.
and various other tools to assist the programmer.

BIBLIOGRAPHY

[1] Poos, Bob, "ARMY'S MANAGEMENT FACES CRITICAL
SHORTAGE OF SOFTWARE EXPERTISE". Federal Computer
Week, May, 28, 1990.

[2] Xenakis, John, "PREPARING FOR 2000", Informationweek, 26
February, 1990.

[3] Brandon, D. H., "COMMERCIAL SOFTWARE", in "SOFTWARE
PORTABILITY", Cambridge University Press, Chapter VI, p. 1977.

[4] Brown, P. J., ed., "SOFTWARE PORTABILITY", Cambridge Uni-
versity Press, 1977.

151 Schneider. V., "PREDICTION OF SOFTWARE EFFORT AND
PROJECT DURATION - FOUR NEW FORMULAS", SIGPLAN No-
tices. Vol. 13, No. 6, 1978. pp 45-59.

[6] Volbcrg. John. "CONVERSION OF COMPUTER SOFTWARE",
Prentice-Ilall, 1981, p. 29.

The author received the B.S. and M.S. degrees in Computer Science
from Wright State University. Dayton, Ohio, in 1985 and 1990, respec-
tively. fie is currently a Phd student at New Mexico Tech, and can
be reached at the Computer Science Dept., New Mexico Tech, Socorro,
NM 87801, (505) 835-5126, and e-mail at finkbine'tminos.nmt.edu.

